HubHSP Graph: Effective Data Sampling for Pivot-Based Representation Strategies

Bibtex entry :

@inproceedings { marchand:sisap2022,
    author = { Marchand-Maillet, Stephane and Ch{\'a}vez, Edgar },
    editor = { Skopal, Tom{\'a}{\v{s}} and Falchi, Fabrizio and Loko{\v{c}}, Jakub and Sapino, Maria Luisa and Bartolini, Ilaria and Patella, Marco },
    title = { HubHSP Graph: Effective Data Sampling for Pivot-Based Representation Strategies },
    booktitle = { Similarity Search and Applications },
    year = { 2022 },
    publisher = { Springer International Publishing },
    address = { Bologna, Italy },
    pages = { 164--177 },
    abstract = { Given a finite dataset in a metric space, we investigate the definition of a representative sample. Such a definition is important in data analysis strategies to seed algorithms (such as {\$}{\$}k{\$}{\$}-means) and for pivot-based data indexing techniques. We discuss the geometrical and statistical facets of such a definition. },
    isbn = { 978-3-031-17849-8", note{(Best paper award) },
}
--

Keywords: machine learning, information geometry, data mining, Big Data, affective information retrieval (recherche d'information), information visualisation, content-based image and video retrieval (CBIR, CBR, CBVR, CBMR, CBMIR), information mining, classification, multimedia and multimodal information management, semantic web, knowledge base (RDF, OWL, XML, metadata, auto-annotation, description), multimodal information fusion