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The data that needs to be processed nowadays is frequently represented in high-dimensional spaces
with the dimension given by the number of features selected. There is a gap between human percep-
tion of low-dimensional spaces and the behaviour of distances within high-dimensional spaces. In
data analysis the phenomenon of “curse of dimensionality” has consequences on the (dis)similarity
matrices because the points become equidistant. In such a situation, methods for dimensionality
reduction fail to reveal in the low-dimensional projected space structures existing in the data.
We therefore propose in this article a clustered multidimensional scaling method for the discovery
and understanding of data structures in view of exploration. Firstly, the data is clustered in the
original space based on the closest k neighbours of each point which results in a disconnected
graph. Secondly, an MDS is performed on each of the graph components. And finally the clusters’
representatives are projected in the reduced space by means of an MDS in order to preserve the

distances between clusters from the original space.

1 Introduction

In recent years, a lot of attention has been ded-
icated to the “curse of dimensionality” due to
its implications in many fields that process high-
dimensional data. In the field of Information Re-
trieval the data processed (image, text, video) is
represented in hundreds or thousands of dimen-
sions: an image may be represented by its pixels
(of the order of hundreds or thousands) or by its
colours (of the order of hundreds, for example in
the 256 RGB colour space), a document can be
represented by the different terms that appear in
the document (of the order of hundreds or thou-
sands). Processing such data is under the influ-
ence of the “curse of dimensionality” effect, an
effect of high-dimensional spaces that poses prob-
lems to all machine learning algorithms for clus-
tering, discrimination, dimensionality reduction.
The term was first introduced by Bellman in 1961.
It refers to the fact that in a high-dimensional
space the sampling of the data grows exponen-

tially with the number of variables (dimensions).
In such spaces the data is very sparse and the
points become equidistant. These two behaviours
lead to a degradation of the results of the algo-
rithms in the field of data-mining.

Exploration in Information Retrieval is another
field that has been given a lot of attention in the
last years. Exploration is one of the last steps of
the Information Retrieval process and is meant
to help the user get acquainted with the content
of the collection that he/she is exploring either
for browsing or for query retrieval. On one hand
the data is more and more represented in high-
dimensional spaces and on the other hand this
data has to be understood by humans, who can
visualize it in hardly more than 2 or 3 dimen-
sions. We propose in this article a clustered multi-
dimensional scaling method for data preparation
meant to diminish the gap existing between the
behaviour of distances within high-dimensional
spaces and human perception of low-dimensional



spaces. The purpose of our method is to enable
guiding the user through the prepared data space
and even hardly improve the exploration process
of datasets assumed to be composed of multiple
distinct classes.

In our work we are exploring the fundamen-
tals of distances’ behaviours in high-dimensional
spaces in order to further develop algorithms that
will improve the quality of clustering and dimen-
sionality reduction techniques which suffer enor-
mously because of the “curse of dimensionality”.
Therefore we propose here a dimensionality re-
duction method for cluster detection optimiza-
tion meant to avoid the undesired effects of high-
dimensional spaces. The paper is organized as fol-
lows: Section 2 is dedicated to an overview of clas-
sical methods for dimensionality reduction based
namely on distance matrices (Multidimensional
Scaling, Sammon Mapping, Locally Linear Em-
bedding, Isomap, Curvilinear Component Analy-
sis, Curvilinear Distance Analysis, Distributional
Scaling and Relational Perspective Map). Sec-
tion 3 describes our approach for processing high-
dimensional data using a clustered multidimen-
sional scaling method. Section 4 presents the
database used and the experimental results of our
method. The paper ends with some discussions
on our method and conclusions in sections 5 and
6.

2 Methods for dimensionality
reduction

Methods for dimensionality reduction are em-
ployed each time high-dimensional data has to be
reduced from a high to a low-dimensional space.
The principle of the mapping process for methods
based on distance matrices is to find the config-
uration of points that best preserves the original
inter-distances.

The most widely used dimensionality reduc-
tion method is Multidimensional Scaling (MDS)
- a method for projecting the data from a
high-dimensional into a low-dimensional space
( ). The attempt of MDS
is to model the proximities from the original
space as geometrical distances in the projected
(reduced) space. The proximities in the origi-
nal space may be any (dis)similarities: distances,
correlations, co-occurences, etc. and the dissimi-
larities in the reduced space are geometrical dis-

tances, the mostly used being the Euclidean dis-
tance.

The first MDS algorithm is Classical Scaling due
to Torgerson (1952) and Gower (1966) where the
coordinates of the elements in the reduced space
are found by an eigendecomposition of the Gram
scalar product matrix derived from the dissimilar-
ity matrix. Once the eigendecomposition is done,
the coordinates are computed based on the first
k eigenvalues (the equivalent of Principal Com-
ponent Analysis for distance matrices). Classical
Scaling is used because it gives an analytical so-
lution and makes no iterations.

However, Classical Scaling is less used than inter-
ative MDS methods in which point coordinates in
the reduced space are found by minimizing a par-
ticular nonlinear stress (error) function (maximiz-
ing the goodness-of-fit). The basic stress function
is given by:

E=Y (dy—6y)

1<J

where J;; are the dissimilarities (distances) in the
original space and d;; are the geometrical dis-
tances in the projected space. A good way of
chosing the best value for the dimension of the
reduced space is to plot the Shepard diagram
( ) for different values of the di-
mension and to choose the one that best preserves
the ratio between the original and the reproduced
distances.

( ) introduces one of the most
widely used nonlinear MDS algorithms whose
purpose is to emphasize the preservation of small
distances. This is done by minimizing the error
function:

E =7 wy(di —b;5)°

i<j

where:
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The terms w;; are introduced to weight the dif-
ferences between the dissimilarities in the origi-
nal space and the distances in the reduced space.

Either all differences are weighted equally by a

constant weight factor wg), or local structure is

to be preserved using a variable weighting factor
wl(;) that gives higher importance to smaller dis-
tances. The method used for the minimization of
the error is a steepest descent procedure (gradient

descent).

Classical Scaling - like PCA - reveals linear struc-
ture in data by eigendecomposition solutions.
PCA preserves the highest variances and classi-
cal MDS preserves the proximities. The nonlin-
ear MDS algorithms, when they use Euclidean
distance in the original space - no matter which
is the error function that they try to minimize
-, give good results for structures lying on lin-
ear Euclidean subspaces but fail when trying to
reduce the space for structures lying on nonlin-
ear Euclidean subspaces (nonlinear data is data
that cannot be mapped onto a reduced space by a
linear transformation). The difficulty of mapping
nonlinear data with methods using Euclidean dis-
tance is that two points that are located far away
on a nonlinear Euclidean low-dimensional mani-
fold can still be located very close according to the
Euclidean distance (eg. the well-known ”Swiss
Roll” configuration). A manifold is a space which
locally resembles a Euclidean space (the neigh-
bours of each point are located in a Euclidean
space) but globally has a more complicated struc-
ture.

Two methods effective in detecting nonlinear Eu-
clidean structures in data are Isomap and Lo-
cally Linear Embedding (LLE). They both at-
tempt to find the low-dimensional manifold on
which the data lies by avoiding to compute the
Euclidean distances between all points. Isomap
is a global method that replaces the Euclidean
distances for far-away points by the geodesic dis-
tance and LLE is a local method that takes into
account only the local structure (only the neigh-
bours of each point). Isomap (Isometric Map-
ping), presented in ( ), is
a generalization of the MDS using the geodesic
distance (a “geodesic” is a straight line in a
curved space, measuring the shortest path be-
tween points in this curved space). The Isomap
algorithm in the first step constructs the neigh-
bourhood graph to unfold the structures, in the
second step computes the geodesic distance be-

tween all points by following the edges built in
the first step. And the last step consists in con-
structing the low-dimensional space using MDS,
but with the geodesic distances, instead of the
Fuclidean distances.

LLE ( ) is based on the as-
sumption that a point together with its first k
neighbours lie on a locally linear patch of the
manifold, even for nonlinear manifolds. Instead of
computing the pairwise distances between points
and trying to preserve them in the reduced space
(like MDS and Isomap do), LLE tries to preserve
only the linear reconstruction of a point from its
neighbours.
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where xﬁv ;) are the first k& neighbours of point z;

weighted by the their contribution to the point
ZTi.

Both Isomap and LLE have analytical solutions
and thus avoid local minima. We present now
two other methods, Curvilinear Component
Analysis (CCA) ( )
and Curvilinear Distance Analysis (CDA)
) which are generalizations
of MDS and outperform it. Still these two last
methods use gradient methods to find a solution
and thus they can get stuck in local minima - in
contrast with LLE and Isomap which avoid local
minima.

CCA considers that it is difficult to match dis-
tances at all scales and so it introduces a weight-
ing function F(déj) and then tries to minimize the
following error

E =) (d}; —d})*F(dl)

1<j

The differences from the other dimensionality
reduction methods are the weighting function
F (déj) and the fact that the weighting is done
in the output (reduced) space and not in the in-
put (original) space. Choosing a monotonically
and unbounded function like

1
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gives too much emphasis to small distances. This
is the reason for which CCA selects for the weight-
ing function a simple step function:
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which introduces the local linearity principle.
CCA, like LLE, preserves rather local geometry.

A small change in CCA resulted in Curvilinear
Distance Analysis. The difference consists in us-
ing instead of the Euclidean distance, the curvi-
linear (geodesic distance). The distance is com-
puted along the structure and not through the
object, like the Euclidean distance.

E= Z (déj - 5iLj)2F(déj)

1<j

In ( ) the authors intro-
duce the Distributional Scaling, an embedding
method aimed at maintaining not only the indi-
vidual dissimilarities but also the distribution of
dissimilarities. They also present a hierarchical
MDS method for embedding clustered data. The
idea behind this latter method is that when the
data is clustered it is normal to treat the dissim-
ilarities between clusters differently than those
within a cluster.

In ( ) the Relational Perspective Map
(RPM) method is introduced which combines the
traditional multidimensional scaling method for
proximity preserving with topology constraints.
The achievement from RPM is that it divides the
data into multiple partitions and embeds them on
the 2D space without overlapping.

3 Clustered Multidimensional
Scaling

Multidimensional scaling is used for different pur-
poses among which exploratory data analysis.
As mentioned in section 1, exploration in the
field of Information Retrieval, either for brows-
ing or query retrieval, is a direct application
of the mapping process of the data into a low-
dimensional space. When data (image, text,
video) is represented only by some measures of
similarity /dissimilarity and it is not generated by

a known model it is useful to be able to explore
the data’s structure. Multidimensional scaling
can be used in this purpose to help the user in-
spect the structure of the data. We start this
section by presenting the difficulties that appear
when exploring high-dimensional data since the
distances between all elements tend to be equal
and we further present an algorithm that is meant
to reveal clusters in data in order to improve the
exploration.

We have reviewed in the previous section a few
methods for mapping the data from the high-
dimensional original space into a low-dimensional
space. Dimensionality reduction methods are
used to make the embedding between the orig-
inal and the reduced space but difficulties appear
due to the gap existing between the behaviour
of distances in high-dimensional spaces and hu-
man perception of low-dimensional spaces. To
ilustrate this gap we give here two typical exam-
ples. The first example is that of points uniformly
sampled from within a hyper-sphere where, as we
increase the dimension, the data is more and more
distributed near the surface. A second example
is that of points uniformly sampled from within
a cube where, as we increase the dimension, the
data is more and more distributed in the corners
(for a 7-dimensional cube, 96% of the mass is con-
centrated in the 128(= 27) “corners”).

The phenomenon that is responsible for the
“curse of dimensionality” is the “empty space
phenomenon”: in high-dimensional spaces the
data is very sparse, which requires an exponen-
tially growing sample set for data analysis. One
problem that appears in high-dimensional spaces
is that the ratio between the distance to the near-
est and to the farthest neighbour goes to 1. Hence
the distance histogram goes towards a more and
more concentrated peak as illustrated in figure 1
[see section 4 for details on the dataset and the
distances used in the examples]. This, together
with the (wrong) choice of the distance measure,
has consequences on the quality of the MDS re-
sults (figure 2 - Stress MDS or figure 3 - Sammon

mapping).

In an unsupervised case (supposing we don’t
know a priori the labels/classes), the result
of such an MDS (one compact cluster) would
be visually almost useless to the user. We
want to guide the user during the explo-
ration of the collection and facilitate the dis-
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Figure 1: Histogram of Euclidean distances computed
using 1000 random digits from the MNIST dataset.
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Figure 2: MDS Stress mapping done on 500 digits.

Figure 3: Sammon mapping on the same 500 digits.

covery and understanding of the class structure.
In ( ) we pro-
posed Collection Guiding as a new principle for
the management of large multimedia collections.
The context is that of a user which is faced with
a large collection of data. The objective of the

Collection Guiding is to help the user easily in-
spect the collection. As shown in figures 2 and
3 the inspection of such a collection without any
a priori knowledge about its content is difficult.
This leads us to propose here a new hierarchical
approach based firstly on a clustering of the data
in the original space and a dimension reduction
applied to each cluster.

The clustering is done using the closest neigh-
bours in the original space inspite the scepticism
existing in the literature on the quality of the clus-
tering results in high-dimensional spaces. Our as-
sumption is that even if the distances between
points tend to be equal, the rank “order” of dis-
tances is still preserved in high dimensions. Of
course this order is also dependent on the similar-
ity (distance) measure used and it can fail when
using real data (handwritten “1” and “7” can be
very similar when Euclidean distance is computed
on their pixel values, figure 4).

Figure 4: A’1’ or a ’7’?

In the following we will present the three steps of
our approach:

1. cluster the data in the original space,
2. apply MDS on each cluster,

3. organise the data in the 2D space around
the cluster representatives projected using an
MDS.

Step 1. Clustering criteria

The distances (here Euclidean distances) between
elements follow a Gaussian distribution (figure 1)
with a more and more concentrated peak as the
dimensionality increases. This phenomenon was
first observed by Paul Lévy in the 1930s’ and put
forward in the 1970s’ by Vitali Milman: the “con-
centration of measure phenomenon” (also known
as the Law of Large Numbers) considered one of
the blessings of dimensionality ( ):
in high dimensions, almost all points are very



close to every subset containing at least half
of the points. Our clustering method is based
on the nearest neighbours taking advantage on
the smallest distances and leaving apart the rest
of them (figure 1). The concentration of dis-
tances around one value due to the “concentra-
tion of measure phenomenon” may influence the
behaviour of the nearest neighbour which is in-
vestigated in ( ) where the au-
thors identify cases when kNN is meaningful or
not. Given the distances d’,;, and d’,,, in a L-
high-dimensional space to the closest and farthest
dmin

dt

max

neighbour from a point 4 the ratio contrast
converges to 1 as L — oo

7

lim -2 =1
L—oo d’;nafc

Thus more the dimensionality increases, more the
variance of the distance distribution (which ap-
proaches a Gaussian one) scaled by the overall
magnitude of the distances converges to 0 and
more the ratio contrast converges to 1: the dis-
tances distribution Fy;s¢ ~ N(p,02) with o — 0.

The clustering step is similar to the first step
of Isomap: construct the neighbourhood graph.
Isomap computes the first k neighbours of each
point, builds the graph based on these neighbours
and then computes the geodesic distance between
the elements that are not directly connected in
the graph. Isomap’s approach is the construction
of a one connected graph such that all geodesic
distances can be computed (there are no individ-
ual components in the graph, which leads to a
“one cluster” MDS). On the contrary, our ap-
proach is data division into clusters to avoid the
“one cluster” analysis. When building the graph
of the first k neighbours the choice of k is criti-
cal because it will influence the number of clus-
ters. We favorise values of k which lead to many
small “clean” over few “noisy” clusters. The mo-
tivation is to distinguish coherent data structures
and process them in isolation (ie. without suf-
fering from the influence of external data when
processing data belonging to one class).

Nearest neighbours clustering.

Let X = {x;,i =1,...,n} be a set of n data points
x; = {zi,..,x;iL} in the L high-dimensional
space. Let 6;; = dist(z,;,x;) be the distance
between points x; and x;.

1. Compute the matric

vertex  degree

V=A{v,i=1,...,n,j=1,...,n} with

1
Vi = neighbours of point x;;

, if x; is among the first k nearest

0, otherwise.

2. Decompose V in independent components c,
with each ¢, corresponding to one cluster. Let
C ={cp,p=1,...,m} be the set of clusters.

The choice of this clustering method is preferred
over k-means or Expectation Maximization algo-
rithms because it makes no assumptions on the
real distribution of the data and the number of
clusters does not have to be known or guessed in
advance: the vertex degree matrix V displays a
structure made of multiple separate independent
components and m - the number of clusters - is
given by the number of independent components
inV.

Step 2. Multidimensional scaling
for each cluster

Our clusters correspond to the individual com-
ponents in our graph. These clusters are ini-
tially represented in the original high-dimensional
space. We then project separately each of the
clusters with an MDS. The MDS method used can
be a Classical Scaling, Sammon mapping, even
Isomap, CCA or CDA. What is important here
is that we assume to process data that shows co-
herent homogeneous structure (since belonging to
the same class).

Dimensionality reduction.

Let X., = {af | 2¥ € c¢,} be the set of
points that belong to cluster c,. Embed each
Xecp from the L high-dimensional space (6;5) to

a lower dimensional space with dimension 1 (d;;).

FE = Z (dij - 61‘]‘)2

i<j

hi=1,| Xep |

Step 3. Data exploration

The last step is the grouping of all clusters within
the same space. We perform an MDS on the
cluster centers in order to preserve the original
arrangements between elements in the reduced
space. The cluster center is chosen among the



points that have the highest number of links to
the other elements in the cluster (the highest ver-
tex degree) and is, by construction, the closest to
the gravity center of the cluster. Once the centers
are projected in the reduced space, the data from
step 2 is gathered around its centers without over-
lap between clusters. The trade-off is between the
cleaness and the number of clusters. For an easy
inspection we prefer cleaness.

Clusters’ centers.
For each X., = {2¥ | 2@ € ¢,} let af be the
center of cluster c, if

[ Xepl [Xepl
g Vi = MaxT E Vi, 8 =1, .| Xep |
k=1 k=1
and

dist(zl, gp) < dist(a?,gp),Vi=1,...,| Xep |0 £t

where g, s the gravity center of cluster c,.

4 Experiments

We use the MNIST digit dataset for our experi-
ments. The dataset has a training set of 60,000
samples and a testing set of 10,000 samples all
being labeled. All digits are normalized to fit in
a 20 *x 20 pixel box and centered in a 28 * 28 im-
age by computing the center of the mass of the
points. This allows to use as distance measure
between two digits the Euclidean distance over
the 784 dimensions (28 28 pixel values p;).

After the clustering step the ideal case would
be to have exactly 10 classes containing each
all handwritten digits corresponding to one label
digit (eg. all 1s in a cluster). The results depend,
as mentioned in the previous section, on the value
of k, the number of neighbours taken to build the
graph and on the distance measure. The exper-
imental results of our clustering approach reveal
the possibility of having 20 clusters, with multiple
clusters for each digit. However the advantage is
that the clusters are clean (as we could see from
our experiments, especially for small values of k)
and during the inspection process the user will

get a clear idea of the dataset content. In the
next figures (5, 6, 7, 8) we illustrate the results of
our method for 100 digits taken randomly from
the database using the first nearest neighbour.
In figure 7 only intra-cluster distances are con-
sidered when plotting the data. Inter-cluster dis-
tances could be further used to better position the
clusters with respect to the other clusters, which
would employ some rotations applied to the clus-
ters in figure 6.

5 Discussion

The clustered multidimensional scaling intro-
duced in this paper is intended to improve the
exploration when the results of the dimensional-
ity reduction methods are ambiguous for the user.

In this study we work with essentially two ideas

in mind:

1. We should make as little as possible use of
the distances within high-dimensional spaces.

Hence we use the ranking rather than the ac-
tual distance values.

2. Assuming the data contains classes, we should
target working within each class in isolation.
Hence clustering is desirable. However, tra-
ditional clustering techniques heavily rely on
the notion of distance. We simplify the clus-
tering so as to trade between cluster quality
and information preservation.

From the advantages of the clustered multidimen-
sional scaling we state here three of them: 1)
MDS convergence is better guaranteed by break-
ing the data into clusters and performing the
MDS on each cluster; 2) a better quality of dis-
tances preservation within one cluster is guaran-
teed by smaller matrices processing and 3) divi-
sion of data into smaller matrices represents a
solution to the burden of analyzing a huge prox-
imity matrix.

Considering the proximity matrix as the input
to the algorithm, the clustering configuration de-
pends only on one control parameter: the number
of nearest neighbours needed to build the graph,
an advantage but also the disadvantage of our
method since the choice of the number of neigh-
bours remains sensible and influences the cluster-
ing.
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Figure 5: The results of the clustering step and on the right the centers chosen by the algorithm.

The initial results obtained with the clustered
multidimensional scaling, as presented in this pa-
per, are encouraging as they show that the distri-
bution of points in the reduced space can be bet-
ter organised in view of exploration using a clus-
tered dimensionality reduction method. The eval-
uation of this method involves two aspects: objec-
tive quantitative evaluation and human-centered
evaluation. Using the nearest neighbours to per-
form the clustering, some quantitative evalua-
tion is already incorporated in the algorithm it-
self. However, further quantitative evaluation
can be performed to test to what extent “invari-
ants” (structures) present in the high-dimensional
space are preserved in the low-dimensional space
too. The human-centered evaluation may consist
in a comparison between the reactions (time, ef-
fort with respect to some predefined tasks) of the
user to our method as opposed to the baseline
(the global multidimensional scaling).

6 Conclusion

In this article we have presented a new approach
for the preparation of large collections of class-
based data in view of exploration. Data is clus-
tered in the original space and all clusters are
then independently projected in a reduced space
by dimensionality reduction methods. In order to
maintain the initial proximities between clusters,
an MDS is performed on the cluster centers which
will allow a guided exploration of the collection of
data.
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Figure 6: The results of the second step, the individual MDS performed on each cluster (note that the arrange-

ment in each cluster is defined up to a rotation).
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Figure 7: Cluster superposition on the centers projected with

arrangement of the data).
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Figure 8: Emphasis on the centers in the initial MDS.
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