Metric Suffix Array For Large-Scale Similarity Search

%
Hisham Mohamed
Université de Genéve
Route de Drize 7
Geneva, Switzerland
hisham.mohamed@unige.ch

ABSTRACT

We propose the Metric Suffix Array (MSA), as a novel and effitie
data structure for permutation-based indexing. The M@&ritfix
Array follows the same principles as the suffix array. Thdisuf
array is mainly used for text indexing. Here, we build the M&A
an alternative for large-scale content based informatairieval.
We also show how the MSA is scalable for parallel and distedu
architectures. We study the performance and efficiency phbu
gorithms in a large-scale context. Experimental resultsvsfast
response time with high efficiency and effectiveness.

Keywords

Metric Suffix Array, Permutation-Based Indexing, Simitgi$earch,
Large-Scale Multimedia Indexing, Distributed indexing

1. INTRODUCTION

Nowadays, with the tremendous increase in the volume of data
the exact matctscenario for answering users’ queries is not com-
monly used anymore. Many applications require the mostlaimi
results to a certain query and not only the exact match. Exam-
ples are text plagiarism to track the similarity between ditla
against a database of texts, multiple genome comparisomdo fi
all the similarities between one or more genes, and multianes
trieval to find the most similar picture or video to a given iexde.

The similarity search paradigm [11] is thus applicable fase ap-
plications.

For a queryy and a data collectio®, similarity search sorts all
the data items itD by their similarity tog according to a given dis-
tance functiond : D x D — R. There are two common search
scenarios, namely the K-nearest neighbor search (K-NN)tlaed
range query. The K-NN retrieves the K-top most relevant abje
to the query. The range query retrieves all the objectséabatthin
a distance range from the query. Several techniques havedaee
veloped for improving the performance of similarity seaft8],

*Viper group, computer science department
Viper group, computer science department

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

LSDS-IR'13 El Rome, Italy

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Stéphane Marchand-Maillet f
Université de Geneve
Route de Drize 7
Geneva, Switzerland .
stephane.marchand-maillet@unige.ch

but due to the curse of dimensionality [16], the scalabibitysim-
ilarity search for high-dimensional data is still limite@ne of the
most promising routes is to perform approximate similasiarch
[10, 15]. This offers solutions to improve the retrieval agtn di-
mensional data at the price of a reduced precision.

One of the recent techniques for approximate similaritycdea
is thepermutation-based indexirig, 1]. In this work, we propose
a novel data structure for handlipgrmutation-based indexeis-
spired by the principle of suffix arrays. Our new data striete-
quires only half the space for each reference point, wherpeoed
to generally available data structures for permutatiosetdandex-
ing [1, 13, 4, 5]. We also show that it is easy to implement and
it is scalable. To validate our claims, we tested MSA for skar
ing within high dimensional large datasets containing iomiks of
objects.

The rest of the paper is organized as follows. In the next sec-
tion, a review of the related work and a brief background &bou
permutation-based indexesd suffix arraysis given. In section
3, we detail the main ideas behind our proposed structureabnd
gorithms. In section 4, we detail the parallel and distiéouim-
plementations of our algorithms. We finally present our ltssn
section 5 and conclude in section 6.

2. RELATED WORK AND DEFINITIONS
2.1 Prior Work

Several works were proposed to speed up the permutati@tbas
indexing using various techniques. Amato and Savino [1ppse
metric inverted files (MIF), which is a data structure to sttine
permutations based on inverted files. Figuerroa et al. [6¢8pip
the distance calculation between the objects by indexiagénmu-
tation relative to their distance from the reference poiktshamed
and Marchand-Maillet [13] proposed a distributed impletagon
of the metric inverted files, through three levels of patagion.
They were able to achieve high speed up comparing to the seque
tial implementation using 40 cores. In [17], authors preptse
brief permutation indexwhich is a technique to reduce memory
usage and speed up the distance calculation. The main idea is
encode the permutation as a binary vector and to compare thes
vectors using the Hamming distance. In [4, 5], authors psepo
the prefix permutation indexwith a parallel implementation. This
PP-Index stores the prefix of the permutations only and nedisa
similarity between objects based on the length of its shprefix.
Novak et.al. [14] proposed the M-Index algorithm. M-Indeaps
the objects to a numeric domain. This is done by selecting-num
ber of pivots as reference points, which represent the tbjee
distance valued(., .) between the objects and the reference points
are then normalized by a constant value which is greater ttien

oo, Loo=(tarnte) Lot =(fararo) « 00 < OL —»j+— 02 —»e— O3 —»je— O4 —»je— 05 —»|«— 06 —>f— O7 —»
er 0O Loz =(taae) Los =(rwfonf2) P(L_Oiy':j): i 2 3|1 2 3(1 2 3|1 2 3|1 2 3|1 2 3|1 2 3|1 2 3
0o o, . string: [[rolr]rnlrol] rilrolfilrol]|t i]l rz]rltolrilrf]lolnlr]

.qlo 5 Loa=(forur2) Los=(ruf2fo) indexing: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Los=(ro,r1,r2) Loz =(fo,r1,r2) buks L buky; | buk;
0% 00 La=(ru1o.r2) MsA: [2]5[8[i0[12[i7[18]2i[L[4[7 [0 [13[15]19]22] 0 [3 [6 [1L[14]16][20]23]
(@)

(b)

(©

Figure 1: a) White circles are data objectso;; black circles are reference objects-;; the gray circle is the query objectq b) Ordered

lists for all the objects L,, . c) Example of Metric Suffix Array

maximum distance between any two objects in the data domain.

2.2 Permutation-based Indexing

The idea of thpermutation-based indexesto predict the prox-
imity between elements according to how they order thetadises
towards a set of reference objects [8, 1]. Given a colleabiory’
objectso;, which are located in a domaib = {0y ...on}, and a
distance functior : D x D — R between the objects. We assume
that the distance functiad ., .) follows the metric space postulates
[18] Vo, 0j,0r € D: (identity) o, = 05 <= d(Oi7 Oj) =0, (non-
negativity)d(oi, 0;) > 0, (symmetry)l(o;,0;) = d(o;,0;) and
(triangle inequality)d(o;, ox) < d(o0i, 05) + d(oj, ok).

A set of n reference object® = {ro,r1,...7n} C D is se-
lected fromD. Each objecb; € D is represented by an ordered
list L,,. The ordered list for each object contains the reference
points sorted by their distancgto the objecto;. More formally,
L,, is the ordered permutation ¢fo,...,r;,...,,) according
to the distance functiod. P(L,,,r;) returns the position of the
reference object; within the ordered lisL,, of objecto;. For ex-
ample,P(L,,,r;) = 4 means that; is the 4th nearest reference
point to the objecb;. Figures 1a and 1b show a group of objects
and their ordered list respectively.

The object ordered lists are saved in the main memory. For a

given querygq, an ordered list, is computed as for the database
objects with respect to the same reference points. The aimil
ity between the query and all the database objeais is mea-
sured by comparing the ordered lists us8ggarman Footrule Dis-
tance(SFD|18].

SFD(0i,q) = Y |P(Lo;,7) = P(Lq,)] @)

rER

2.3 Suffix Array

We recall the principles of indexing with suffix arrays. Welwi
extend these principles for a different usage. Edie a string of
lengthm = |S| over a finite orderedlphabetX. Assume that
the special symbo$ is an element of and appears once at the
end; S[m] = $. S[¢] indicates the character at positioin S, for
0 < i < m. S[i..j] represent the substring starting with the
character at positionand ending with the character at positipn
The substringS[i..m] is thei-th suffix of S, and it is denoted by
S(4).

The suffix arraysuff of the stringS is an array of integers in the
range0 to m, specifying the lexicographic order of the suffixes
of the stringS [12]. Thatis,S (suff[0]), S(suff[1]), ..., S(suff[m])
is the sequence of suffixes 6fin ascending lexicographic order.
For clarification, see figure 2. Suffix arrays are used to esery

occurrence of substring within S in an effective way for many
applications such as Bioinformatics [9].

7|0 1 2 3 4 5] 6 7
suff [7 0 2 5 1 3] 6 4
S(suffls]) [$ | acactat$ | actat$ | at$ | cactat$ | ctat$ [3 | tat$

Figure 2: The suffix array of the string S = acactat$.

3. MSA: METRIC SUFFIX ARRAY

Let us assume that we concatenate the orderedlistdor all
the database objects. We obtain one single stfirgyer a finite
setX= R. The length of the string isn = n x N, wheren
is the number of reference points i and N is the number of
objects. Hence a suffix array can be built for the strthgAt each
position of the suffix array, an object-ig.id, a reference-id;.id
andP(L,,,r;) are encoded. This data is used to answer a ggery
in a fast and effective way without the need to access thegstni
the ordered lists as discussed in the next sections. Théraotisn
of the metric suffix array is performed on three steps asvialo

1. Creating the order lists: For each objegtan ordered list
L,, is constructed as explained in section 2.2.

2. Concatenation: These ordered lists are concatenatemhto c
struct a single unified strin§ = [Lo, [0] . . . Loy [1n]]. String
elementS[¢] indicates a reference poinf at positior: in the
string, which we call the global index. The reference point
r; also has a local index value which defines the location of
r; in the ordered list of the objed®(L,,,r;), whereL,, is
a substring withinS; L,, = S[so, - .. €0,], S0, ande,, are
the start and the end position of the ordered list of object
in the stringS.

3. MSA construction: For fast construction and usage of the
MSA, we divide the MSA into bucket®.ky . . . buk,,, where
n is the number of reference points. A buckett; is an
interval of the metric suffix array}SA[l,] of size N and
determined by its left and right ends. Each bucket contains
all suffixesS(MSA[l]) ... S(MSA[r]) that share a common
prefix of length 1, which means all the suffixes with the same
starting reference points; are located in the same bucket.
Hence, the MSA is constructed and partially sorted and there
is no need for storing the concatenated string and the atdere
lists, see figure 1c. In normal suffix arrays, the suffixes are
sorted in lexicographic order. Our MSA is not fully sorted.
MSA is only sorted by buckets, but within each bucket the
suffixes are ordered randomly. Using the MSA and equa-
tion (1), we can answers users’ queries in an effective way.

Hence, The main idea is that the MSA provides an organized Algorithm 2 Full permutation searching

representation of the reference poinjsin the ordered lists
of the objectsL,, , in order to improve the ordered lists com-
parison.

Comparing to MIF [1, 13], and PP-Index [4, 5] MSA saves half
of the memory. In MIF, 8 bytes are needed for each referenice po
in every ordered list to store the.id andP(L,,, ;). In PP-Index,

4 bytes are needed for the reference point and other 4 bytésefo
pointer in the prefix tree. In MSA, only 4 bytes are needed aoest
the global index of the reference point in the concatenatauss,
which contains all the needed information. In the next sective
detail the indexing and the searching algorithms using t&A\M

3.1 Indexing

For optimal memory usage, the suffix array is built on the fly
without actually constructing the string. First, we construct an
arrayMSA of sizem = n x N. Then, for each object, an ordered
listis generated. This ordered list is scanned elementdmenht to
fill each position in theMSA. Algorithm 1 shows the indexing pro-
cess. Lines 1-2 construct the ordered lists for all databagts
one by one. Lines 3-4 fill the suffix array, whergid x N defines
the start of the associated bucket,id defines the position inside
the bucket ando;.id x n) + P(L,,,r;) defines the global index
of r; in the stringS. The processing complexity and the memory
usage of the algorithm ax@(m).

Algorithm 1 Full permutation indexing

IN: Domain D of N objects,
References lisk of n elements,
OUT: Suffix array:MSA;
1. Foreachv € D
2. L,, =Create_Ordered_Li&t; , R)
3. Foreachr € Lo,
4. MSA[(rj.id x N) + 0;.id] = (0;.id X n) + P(Lo,,7;)

3.2 Searching

To retrieve the K-top results for a quegyL, has to be compared
with every L,, using equation (1). Hence, we need the object-id
0;.1d, the reference-ia;.id and theP(L,,, ;). This information
is encoded in th&1SA. Ther;.id is already defined as the MSA is
divided into buckets and each bucket has the global indek sdf.
fixes which start with the same. From eachMSA value, we can
extract thev;.id and theP(L,,, r;) as given in Algorithm 2. Lines
1-2 createsV accumulators and initialize it by zero. Line 3 creates
the ordered list for the query. Lines 4-5 define the bucket range
of each reference point in the query ordered list. Lines @{itlge
object-id and the position of the reference potptin the ordered
list of the object from the suffix value. Line 8 updates theusmca-
lator of the object found with the difference between theitpms
of the reference point; in the query and its location in the ordered
list of the object "RefPos". Lines 9-10 sorts the objectselbasn
the accumulators values and send the results back to theTumer
oretically, the complexity i€)(m) for filling the accumulators and
O(N log N) for sorting them as we use quick sort algorithm.

3.3 Using nearest permutations

The information given by the ordering of the farthest refee
points is not critical. Hence, in order to reduce the memagdy
we can use only the nearest reference points to identifyhifeets.

IN: Query: q,
References lisk of n elements,
Metric Suffix array:MSA;
OUT: Sorted Objects listout
1. Create alist of accumulator$[0 . . . N]
2. Setaccumulators values@o
3. Create the query ordered li5t,
4. Forrj € Lq
5. Fork < (rj.id x N)tok < (rj.id x N) + N
6 0,4 = (MSA[k] — (MSA[k] mod n))/n
7 RefPos= (MSA[k] mod n) + 1
8 Acc|O;q] = Acc|O;q] + |P(r;, Lq)—RefPo$
9. sort(Acc)
10. out + Acc

Ordered lists using nearest two reference points:

Loo=(r2,11) Loi =(r2,r1) Loa=(r2,f1) Loa=(r1,fo)) Loa=(fo,r1) Los=(rs,r2)
Log=(fo,r1) Lo7=(fo.r1

+— Obj 0 —++— Obj 1—+— Obj 2 —+k—Obj 3 —}— Obj 4 ——Obj 5 —— Obj 6 —+—Obj 7 —
Pllowj) 0 1|0 1|0 1|0 1|0 1|0 1|0 1|0 1
sting: [r]n|re[nlre[njnfro|nn|nle|n]n|nln]
Indexing: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
buk;o buk; bukr,
MSA [7]8]12[14]1[3[5][6]9]10[13][15] 0 2[4 [11]

Figure 3: Example of MSA using nearest reference points

This can be done by distributing the reference point® iand every
object is indexed with respect #, whereR € R and represents
then reference points closest to the object. The size of the MSA is
m = f x N, wheren = |R| andN is the number of objects. Since
R is not unique and is based on the location of the object, tiscke
are not of the same size. Hence, indexing and searching raust b
adapted as described next. Figure 3 shows an example ofimgdex
using the nearest reference objects.

3.3.1 Indexing

Count sort is used for indexing using the nearest permuistio
The basic idea is to determine, for each suffix, the numbeuff s
fixes located before it. This helps placing the suffix valuediy
into its position in the MSA. In Algorithm 3, lines 1-2 creaa@
arraybuk_count of sizen and initialize it with zero to count the
number of occurrences of each reference points in all therecd
lists. Lines 3-6 create and scdn, Yo; € D element by element.
Once a reference poinj is found,buk_count|r;] is updated. Ac-
cordingly, the size of each bucket is defined. Lines 7-11 defin
the start and the end of each bucket. Since buckets are gentig
ous, the left end of bucketbuk,; equals to the right end of the
previous buckebuk,,_,.r. Consequently, the right endof the
bucket equalsbuk., .rr = buk,, .l + buk_count[r;]. Lines 12-14
build theMSA. CounterC'., is created and initialized with zero for
each reference poin to define the location in its bucket. Ordered
lists are scanned element by element and placed directlyein t
appropriate location in th1SA. Theoretically, the complexity is
O(2m) and the memory usage @3(m).

3.3.2 Searching

Similar to what is done in Algorithm 2, to rank the database ob
jects for a queryy, we need three items: the objectdgid, the
reference-id-;.id and theP (L, , r;). After creatingL,, the buck-

Algorithm 3 Nearest permutation indexing

IN: Domain D of N objects,
References lisk of n elements,

OUT: Suffix array:suff

1. Foreacly «+— Oton

2 buk_count[j] = 0

3. Foreactv € D

4. L,, =Create_Ordered_List_With_Nearest_Referefigsk)

5. Foreach € Lo,

6 buk_count(r;] + +

7. bukp.l=0

8. bukg.r = buko.l 4+ buk_count|0]

9. Foreacly «— lton

buk,-j A= buk:7-].71 T
11. buk,-j r= buk:7-]. 1+ buk_count|r;]
12. Foreach € D

Foreach € Lo,
MSA[buk,; .l + (Cr; + +)] = 05.id X 7o + P(Lo,, 75)

algorithms, we face a race condition problem as some presess
access the accumulator of the same object, but in differeridis,
which affect the final results. Our solution is to set the acalator
update functions in line 8 in the two algorithms as a critiegjion.
Hence, most of the time is consumed in organizing the acdéke o
processes to the critical region as the rest of work is simplee
best speedup is obtained by parallelizing the 'for’ loopkrat 5 in
algorithms 2 and 4 as we do not need the critical region. Fer ev
ery bucket, all the processes update the accumulatorsfferetit
objects separately.

4.2 Distributed Implementation

The data domairD of N objects is randomly divided into sub-
domains of equal sizedy . . . D, wherep is the number of parallel
processes. Using reference points known by all processes, every
process builds its own MSA based on the global referencetpoin
and the partial data it has access to. As a result, we obtaliti- mu
ple partial MSAs, where each process is responsible forferdiit
MSA representing only a sub-domain of the full dataset and no
related to the other MSAs (see figure 4). Hence technicaklydin
vide the data file into subfiles and each file is handled on araifft

ets in the MSA are scanned based on the order of the referencemachine separately in parallel.

points inL,. In Algorithm 4, lines 1-2 create the accumulators and
initialize them by(n + 1) x @2, which is the maximum possible dis-
tance between an object and the query. Lines 4-8 accesstihe ac
buckets whose reference points appeared in the query drtiste
and update the accumulators, whéfiet- 1) shows that a reference
point presented i, and|P(Lq,r;)—RefPos$, gives the differ-
ence between the positionof in L, andL,,. Lines 9-10 sort and
gives the output. Theoretically, the complexityd§m) for filling

the accumulators an@(N log N) for sorting them.

Algorithm 4 Nearest permutation Searching

IN: Query: q,
References lisk of n elements,
Suffix array:suff;
OUT: Sorted Objects listout
1. Create alist of accumulatorscc|0. .. N]
2. Setaccumulators values(+ 1) x 7
3. Create the query ordered list based on the nearest reésep
4. Forr € Ly
5. Fork «— MSA[bukr, .I] to MSA[buk, .r]
6 O;q = (MSA[k] — (MSA[k] mod 7n))/n
7 RefPos= (MSA[k] mod n) + 1
8 Acc|O;q] = AcclO;q] — (74 1) + |P(Lg,7j)—RefPo$
9. sort(Acc)
10. out « Acc

4. MULTI-CORE AND DISTRIBUTED MSA

4.1 Multi-Core Implementation

Currently, most computers are multi-core. For indexingrdgP
[2] does not support parallel /0. Hence, we face a bottlkineac-
cessing the data file. We solve this problem by setting thee itd
part as a critical region, which means only one thread caasacc
the file at a time. Creating the ordered list, sorting it, aliith§j the
MSA is done in parallel for different objects. As a result, glgain
sub-linear speedup, as shown in the results section.

For searching, we can parallelize the 'for’ loops at line 4irce
5 in algorithms 2 and 4, by distributing the for loop on theibva
able processes. For parallelizing the for’ loops at lin@ 4hie two

To answer a query, all the MSAs need to be scanned. A broker
process accepts query requests and broadcasts them teealpod-
cesses. Upon reception, each process starts to index thewjitie
respect to the list of the global reference points and toyatip
search on its local MSA. Once done, every process sendscis lo
accumulators to the broker process. The broker concatetiate
accumulators from different processes and sorts the abjeted
on their accumulator values. More formally, the 'for’ loofyem
line 4 to line 8 in algorithms 2 and 4, are running in paralieldif-
ferent parts of sizéV/p, whereNN is the number of objects ancdis
the number of processes. There is an extra over head, whiké is
communication time, needed to receive the partial accumulators
from different processes. Hence, theoretically the oVemahplex-
ity is O(N/p)n + t,, for full permutation andD(N/p)n + t, for
nearest permutation. MPI [7] is used for our implementation

Process 0
P(Lout): «~—Obj0 —»«—0bj1l —»|«—0bj2 —»}«— Obj3 —
oW1 2 3|1 2 3|1 2 3|1 2 3
StingO: [, [[| nlr|] nlr|nln]rn
Index: o 1 2 3,4 5 6 7,8 9 10 11
UKo bUkrl UKy
MSAO: [2 [5]8J10]1]4]7[]9]0]3[6]11]
Process 1

«— Obj 4 —> j«— Obj 5 —>«— Obj 6 —><~— Obj 7—
Plowr): | 1 2 3|1 2 3|1 2 3|1 2 3

stringl: [[n[rne | nlelnlr[nlelin[nln]

Index: 0 1 2 3‘4 5 6 | 9 1
buk,o | buky | UKy

MSAL1: [0]2 69 | 13710 2][4]8]1il]

Figure 4. Example of multiple partial MSA for 8 objects and 2
processes.

5. EXPERIMENTAL RESULTS

In [13], we proposed a distributed implementation of the MIF
[1]. We were able to achieve high speed up using 40 cores, but
we were facing a problem with memory consumption. Here, we
compare the performance of our MSA to the performance of MIF
as our baseline structure. We have implemented the MSA using
C++. The sequential and the multicore experiments were dane

an 8-core machine holding 32Gb of memory and a TeraBytegora MSA outperform MIF. Although theoretically, MSA has the sam
capacity. The distributed experiments were done on a canput complexity as MIF. The main reason is that handling the ariiatp
cluster of 20 machines, each one has 8Gb of memory and 2 coreshe main and the cache memories is much better than hantdkng t
and a disk of 512GB. Our experiments are based on two differen inverted files. Also, our algorithm consumes half of the mgmo

datasets. The first dataset consists of 2,076,399 objeéetaslused
to compare the MSA and the MIF regarding indexing and seagchi
times for sequential and multicore implementations. Algeshow
the recall and the position error (PE) [18] using full and resa
permutations. The second dataset consists of 4,594,784telgind
was used for large scale distributed indexing. The two é#teere
visual shape features (21-dimensional), which were eteceitom
the 12-million ImageNet corpus [3].

5.1 Recall and position error

We measure the average recall and position error based on 10

different queries selected randomly from the datasets.urgi
shows the average recall and position error using full arat-ne
est permutations. The selection of the reference pointsrig dy
defining a certain threshold, where the minimum distanceden
any two references is greater than this threshold value.n&ar-
est permutation indexing, we used the closest half referponts.
For instance, if we have 1000 reference point, we chose these
500 points only. For full permutations, we can see that iasirey
the reference points does not really affect the recall aftegrtain
value. In our dataset, after 1000 reference points usirgo@rt
mutation the recall stays constant. For nearest permuogatising
the closest 1000 out of 2000 gives higher recall value thamgus
1000 reference points for full permutation. The reason & tts-
ing 1000 reference points out of 2000 reference points meels
object identified by the nearest reference points only, wihiake
a unique identification of each object and leads to an imuroge
call. Hence, we empirically derive that the best ratio betwthe
number of nearest reference points and the datasets,/ (N/2)
and the closest reference points can be chosen d oéference
points. For position error, as we can see using half perioutat
increases the PE, but it decreases when the number of cte$est
erence points increases.

Average Recall and PE For K=100

----Recall-Full permutations

17 @ Recall-Nearest permutations r 0.0008
0.9 - L3 —& - PE-Full Permutations - 0.0007 E
= 0.8 A \ —e—PE-Nearest Permutations)
© \ - 0.0006 &
g 0.7 A qu
e 06 4 - 0.0005 -
gb 05 - - 00004 &
-+
g %47 - 00003 &
B S
< g'; | - 00002 m
01 - - 00001 8

0 0

500 1000 1500
Number of reference points

2000

Figure 5: Recall and PE for K=100 using full and nearest half
permutations for 100, 500, 1000, 1500 and 2000 reference pbi

5.2 Response time

5.2.1 Sequential and Multi-Core Implementation

Figures 6 and 7 show the indexing and the searching timecespe
tively. As we can see from the two figures, using full permiotat

consumed by MIF. For example, for 2’000 reference pointsi- Ml
needs about 30Gb of memory while MSA needs 15GB. The reason
is that we encode, in each suffix array value, the positiorhef t
reference point and the object-id instead of saving therwasép-
arate values. Also, we can see that the running time deceasgy
multicore for MIF and MSA, and still MSA outperforms MIF. Us-
ing nearest 1000 reference point out of 2000 reference pehith

gave the best recall value) the response time is 1.9 second.

Indexing
_ = MSA MultiCore-Nearest

MSA-Nearest
7 MSA MultiCore-Full
11 MIF Multicore-Full

©
o
S
1 808

800 -
700 -
600 -

< 500 -

£ 400 -

F 300 4
200 -
100 -

SRS 640

S35 435

I11l1l 120

Number of reference points

Figure 6: Average Indexing time in seconds. The values above
the columns show the running time in seconds

Searching
= MSA MultiCore-Nearest
¥ MSA-Nearest
% MSA Multicore-Full
1l MIF MultiCore-Full

& MSA-Full
=

10000

)
S b
© ™
- o

1000 = MIF-Full

Time(log10)
E

£t 7.9
5% 10
ANNE]

NN 3.8

1.3
|| 1.9

1500
Number of reference points

2000

Figure 7: log10 of the average searching time. The values ab®
the columns show the average running time in seconds.

5.3 Distributed Implementation

Figures 8 and 9 show indexing and the searching time respec-
tively for 4,594,734 objects using MSA. As we can see, thetim
decreases when the number of cores increases with the seatle re
and PE. Using the closest 1500 points out of 3000 refereniogspo
we are able to retrieve the most similar objects in less thsethnd
using 20 cores and with recall value more than 0.7.

6. CONCLUSION

We have presented the Metric Suffix Array data structureckvhi
is a novel data structure for permutation-based indexintamfe
scale multidimensional data. MSA is adapted to work with ful
and nearest permutations while saving half of the memorgecte
for other permutation-based indexing data structures31415].

% 20C -N t P tati . . .
ores - Neares erm.u ations pistributed Indexmg
N 20 Cores - Full Permutations

% 10 Cores - Nearest Permutations
#® 10 Cores - Full Permutations

1. 5 Cores - Nearest Permutations < o

450 =} I}

_ 400 -| #5 Cores - Full Permutations o™
.'_3, 350
300
E 250
200
150

100
50

1500

2000 .
Number of reference points

Figure 8: Indexing time using 5, 10, 20 distributed cores. Tk
values above the columns show the running time in seconds.

Distributed Searching

45 - W 20 Cores - Nearest Permutations o
40 4 ™ 20 Cores - Full Permutations N
35 | ® 10 Cores - Nearest Permutations nh
- %210 Cores - Full Permutations e
%30 1 & 5 Cores - Nearest Permutations e
'é’ 25 4 . 5 Cores - Full Permutations E:E:
i= 20 4 R
15 - wo '.::

J o FE

10 © @

5 - "

— N

0 o ﬁ !

2000
Number of reference points

3000

Figure 9: Searching time using 5, 10, 20 distributed cores. fe
values above the columns show the running time in seconds.

Also, we showed that the MSA outperforms the MIF. We stud-
ied the best ratio between the dataset and the references poid
showed how this affects the recall and the position error.

Our current work focuses on proposing a further strategpeed

up the searching using MSA. Also, we will propose some tech

niques for selecting the reference points to improve thalkeEor
the distributed implementation, we will provide other stgies for
distribution and seek the best possible performance.

7.

ACKNOWLEDGMENT

This work is jointly supported by the Swiss National Science
Foundation (SNSF) via the Swiss National Center of Competen
in Research (NCCR) on Interactive Multimodal InformatioahA
agement (IM2) and the European COST Action on Multilingual
and Multifaceted Interactive Information Access (MUMIARhe
Swiss State Secretariat for Education and Research (SER).

8.
(1]

(2]

REFERENCES

G. Amato and P. Savino. Approximate similarity search in
metric spaces using inverted files.Pnoceedings of the 3rd
international conference on Scalable information systems
InfoScale '08, pages 28:1-28:10, ICST, Brussels, Belgium,
Belgium, 2008. ICST.

L. Dagum and R. Menon. Openmp: An industry-standard api
for shared-memory programmindEEE Comput. Sci. Eng.
5(1):46-55, Jan. 1998.

(3]

[4

—_—

5

—_

[6

—_

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPRO0920009.

A. Esuli. Mipai: Using the pp-index to build an efficiema
scalable similarity search system.Pnoceedings of the 2009
Second International Workshop on Similarity Search and
Applications SISAP '09, pages 146-148, Washington, DC,
USA, 2009. IEEE Computer Society.

A. Esuli. Pp-index: Using permutation prefixes for effiot
and scalable approximate similarity seareloceedings of
LSDSIR 2009i(July):1-48, 2009.

K. Figueroa and K. Frediksson. Speeding up permutation
based indexing with indexing. IRroceedings of the 2009
Second International Workshop on Similarity Search and
Applications SISAP '09, pages 107-114, Washington, DC,
USA, 2009. IEEE Computer Society.

T. M. Forum. Mpi: A message passing interface, 1993.

E. Gonzalez, K. Figueroa, and G. Navarro. Effective
proximity retrieval by ordering permutation&EE
Transactions on Pattern Analysis and Machine Intelligence
30(9):1647 —1658, sept. 2008.

R. Grossi, Jeffrey, and S. Vitter. Compressed suffixysara
and suffix trees with applications to text indexing and strin
matching (extended abstract.imProceedings of the 32nd
Annual ACM Symposium on the Theory of Compuytiages
397-406, 2000.

P. Indyk and R. Motwani. Approximate nearest neighbors
towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computingSTOC '98, pages 604-613, New York,
NY, USA, 1998. ACM.

H. V. Jagadish, A. O. Mendelzon, and T. Milo.
Similarity-based queries. IRroceedings of the fourteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systemBODS '95, pages 36—-45, New York,
NY, USA, 1995. ACM.

U. Manber and E. W. Myers. Suffix arrays: A new method
for on-line string searcheSIAM J. Comput.22(5):935-948,
1993.

H. Mohamed and S. Marchand-Malillet. Parallel apprasch
to permutation-based indexing using inverted filestim
International Conference on Similarity Search and
Applications (SISAR)Toronto, CA, August 2012.

D. Novak, M. Batko, and P. Zezula. Metric index: An
efficient and scalable solution for precise and approximate
similarity searchlnf. Syst, 36(4):721-733, 2011.

M. Patella and P. Ciaccia. Approximate similarity sgrarA
multi-faceted problemJ. of Discrete Algorithms

7(1):36-48, Mar. 2009.

H. SametFoundations of multidimensional and metric data
structures The Morgan Kaufmann series in computer
graphics and geometric modeling. Elsevier/Morgan
Kaufmann, 2006.

E. S. Téllez, E. Chavez, and A. Camarena-Ibarrola. Afbri
index for proximity searching. IRroceedings of the 14th
Iberoamerican Conference on Pattern Recognition: Progres
in Pattern Recognition, Image Analysis, Computer Vision,
and ApplicationsCIARP '09, pages 529-536, Berlin,
Heidelberg, 2009. Springer-Verlag.

P. Zezula, G. Amato, V. Dohnal, and M. Batiimilarity
Search: The Metric Space Approastolume 32 ofAdvances
in Database SystemSpringer, 2006.

