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ABSTRACT
We propose the Metric Suffix Array (MSA), as a novel and efficient
data structure for permutation-based indexing. The MetricSuffix
Array follows the same principles as the suffix array. The suffix
array is mainly used for text indexing. Here, we build the MSAas
an alternative for large-scale content based information retrieval.
We also show how the MSA is scalable for parallel and distributed
architectures. We study the performance and efficiency of our al-
gorithms in a large-scale context. Experimental results show fast
response time with high efficiency and effectiveness.
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1. INTRODUCTION
Nowadays, with the tremendous increase in the volume of data,

theexact matchscenario for answering users’ queries is not com-
monly used anymore. Many applications require the most similar
results to a certain query and not only the exact match. Exam-
ples are text plagiarism to track the similarity between an article
against a database of texts, multiple genome comparison to find
all the similarities between one or more genes, and multimedia re-
trieval to find the most similar picture or video to a given example.
The similarity search paradigm [11] is thus applicable for these ap-
plications.

For a queryq and a data collectionD, similarity search sorts all
the data items inD by their similarity toq according to a given dis-
tance functiond : D × D −→ ℜ. There are two common search
scenarios, namely the K-nearest neighbor search (K-NN) andthe
range query. The K-NN retrieves the K-top most relevant objects
to the query. The range query retrieves all the objects located within
a distance range from the query. Several techniques have been de-
veloped for improving the performance of similarity search[18],
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but due to the curse of dimensionality [16], the scalabilityof sim-
ilarity search for high-dimensional data is still limited.One of the
most promising routes is to perform approximate similaritysearch
[10, 15]. This offers solutions to improve the retrieval of high di-
mensional data at the price of a reduced precision.

One of the recent techniques for approximate similarity search
is thepermutation-based indexing[8, 1]. In this work, we propose
a novel data structure for handlingpermutation-based indexes, in-
spired by the principle of suffix arrays. Our new data structure re-
quires only half the space for each reference point, when compared
to generally available data structures for permutation-based index-
ing [1, 13, 4, 5]. We also show that it is easy to implement and
it is scalable. To validate our claims, we tested MSA for search-
ing within high dimensional large datasets containing millions of
objects.

The rest of the paper is organized as follows. In the next sec-
tion, a review of the related work and a brief background about
permutation-based indexesand suffix arraysis given. In section
3, we detail the main ideas behind our proposed structure andal-
gorithms. In section 4, we detail the parallel and distributed im-
plementations of our algorithms. We finally present our results in
section 5 and conclude in section 6.

2. RELATED WORK AND DEFINITIONS

2.1 Prior Work
Several works were proposed to speed up the permutation-based

indexing using various techniques. Amato and Savino [1] propose
metric inverted files (MIF), which is a data structure to store the
permutations based on inverted files. Figuerroa et al. [6] speed up
the distance calculation between the objects by indexing the permu-
tation relative to their distance from the reference points. Mohamed
and Marchand-Maillet [13] proposed a distributed implementation
of the metric inverted files, through three levels of parallelization.
They were able to achieve high speed up comparing to the sequen-
tial implementation using 40 cores. In [17], authors propose the
brief permutation indexwhich is a technique to reduce memory
usage and speed up the distance calculation. The main idea isto
encode the permutation as a binary vector and to compare these
vectors using the Hamming distance. In [4, 5], authors proposed
theprefix permutation index, with a parallel implementation. This
PP-Index stores the prefix of the permutations only and measure the
similarity between objects based on the length of its sharedprefix.
Novak et.al. [14] proposed the M-Index algorithm. M-Index maps
the objects to a numeric domain. This is done by selecting num-
ber of pivots as reference points, which represent the object. The
distance valuesd(., .) between the objects and the reference points
are then normalized by a constant value which is greater thanthe
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Figure 1: a) White circles are data objectsoi; black circles are reference objectsrj ; the gray circle is the query objectq b) Ordered
lists for all the objectsLoi . c) Example of Metric Suffix Array

maximum distanced between any two objects in the data domain.

2.2 Permutation-based Indexing
The idea of thepermutation-based indexesis to predict the prox-

imity between elements according to how they order their distances
towards a set of reference objects [8, 1]. Given a collectionof N
objectsoi, which are located in a domainD = {o0 . . . oN}, and a
distance functiond : D×D → ℜ between the objects. We assume
that the distance functiond(., .) follows the metric space postulates
[18] ∀oi, oj , ok ∈ D: (identity)oi = oj ⇐⇒ d(oi, oj) = 0, (non-
negativity)d(oi, oj) ≥ 0, (symmetry)d(oi, oj) = d(oj , oi) and
(triangle inequality)d(oi, ok) ≤ d(oi, oj) + d(oj , ok).

A set ofn reference objectsR = {r0, r1, . . . rn} ⊂ D is se-
lected fromD. Each objectoi ∈ D is represented by an ordered
list Loi . The ordered list for each object contains the reference
points sorted by their distanced to the objectoi. More formally,
Loi is the ordered permutation of(r0, . . . , rj , . . . , rn) according
to the distance functiond. P (Loi , rj) returns the position of the
reference objectrj within the ordered listLoi of objectoi. For ex-
ample,P (Loi , rj) = 4 means thatrj is the 4th nearest reference
point to the objectoi. Figures 1a and 1b show a group of objects
and their ordered list respectively.

The object ordered lists are saved in the main memory. For a
given queryq, an ordered listLq is computed as for the database
objects with respect to the same reference points. The similar-
ity between the queryq and all the database objectsoi is mea-
sured by comparing the ordered lists usingSpearman Footrule Dis-
tance(SFD)[18].

SFD(oi, q) =
∑

r∈R

|P (Loi , r)− P (Lq, r)| (1)

2.3 Suffix Array
We recall the principles of indexing with suffix arrays. We will

extend these principles for a different usage. LetS be a string of
lengthm = |S| over a finite orderedalphabetΣ. Assume that
the special symbol$ is an element ofΣ and appears once at the
end;S[m] = $. S[i] indicates the character at positioni in S, for
0 ≤ i < m. S[i..j] represent the substringS starting with the
character at positioni and ending with the character at positionj.
The substringS[i..m] is thei-th suffix of S, and it is denoted by
S(i).

The suffix arraysuff of the stringS is an array of integers in the
range0 to m, specifying the lexicographic order of them suffixes
of the stringS [12]. That is,S(suff[0]), S(suff[1]), . . . , S(suff[m])
is the sequence of suffixes ofS in ascending lexicographic order.
For clarification, see figure 2. Suffix arrays are used to locate every

occurrence of substringB within S in an effective way for many
applications such as Bioinformatics [9].

i 0 1 2 3 4 5 6 7
suff 7 0 2 5 1 3 6 4

S(suff[i]) $ acactat$ actat$ at$ cactat$ ctat$ t$ tat$

Figure 2: The suffix array of the string S = acactat$.

3. MSA: METRIC SUFFIX ARRAY
Let us assume that we concatenate the ordered listsLoi for all

the database objects. We obtain one single stringS over a finite
setΣ= R. The length of the string ism = n × N , wheren
is the number of reference points inR andN is the number of
objects. Hence a suffix array can be built for the stringS. At each
position of the suffix array, an object-idoi.id, a reference-idrj .id
andP (Loi , rj) are encoded. This data is used to answer a queryq
in a fast and effective way without the need to access the string or
the ordered lists as discussed in the next sections. The construction
of the metric suffix array is performed on three steps as follows:

1. Creating the order lists: For each objectoi an ordered list
Loi is constructed as explained in section 2.2.

2. Concatenation: These ordered lists are concatenated to con-
struct a single unified stringS = [Lo0 [0] . . . LoN [n]]. String
elementS[i] indicates a reference pointrj at positioni in the
string, which we call the global index. The reference point
rj also has a local index value which defines the location of
rj in the ordered list of the objectP (Loi , rj), whereLoi is
a substring withinS; Loi = S[soi . . . eoi ], soi andeoi are
the start and the end position of the ordered list of objectoi
in the stringS.

3. MSA construction: For fast construction and usage of the
MSA, we divide the MSA into bucketsbuk0 . . . bukn, where
n is the number of reference points. A bucketbuki is an
interval of the metric suffix arrayMSA[l, r] of sizeN and
determined by its left and right ends. Each bucket contains
all suffixesS(MSA[l]) . . . S(MSA[r]) that share a common
prefix of length 1, which means all the suffixes with the same
starting reference pointsrj are located in the same bucket.
Hence, the MSA is constructed and partially sorted and there
is no need for storing the concatenated string and the ordered
lists, see figure 1c. In normal suffix arrays, the suffixes are
sorted in lexicographic order. Our MSA is not fully sorted.
MSA is only sorted by buckets, but within each bucket the
suffixes are ordered randomly. Using the MSA and equa-
tion (1), we can answers users’ queries in an effective way.



Hence, The main idea is that the MSA provides an organized
representation of the reference pointsrj in the ordered lists
of the objectsLoi , in order to improve the ordered lists com-
parison.

Comparing to MIF [1, 13], and PP-Index [4, 5] MSA saves half
of the memory. In MIF, 8 bytes are needed for each reference point
in every ordered list to store theoi.id andP (Loi , rj). In PP-Index,
4 bytes are needed for the reference point and other 4 bytes for the
pointer in the prefix tree. In MSA, only 4 bytes are needed to store
the global index of the reference point in the concatenated stringS,
which contains all the needed information. In the next section, we
detail the indexing and the searching algorithms using the MSA.

3.1 Indexing
For optimal memory usage, the suffix array is built on the fly

without actually constructing the stringS. First, we construct an
arrayMSA of sizem = n×N . Then, for each object, an ordered
list is generated. This ordered list is scanned element by element to
fill each position in theMSA. Algorithm 1 shows the indexing pro-
cess. Lines 1-2 construct the ordered lists for all databaseobjects
one by one. Lines 3-4 fill the suffix array, whererj .id×N defines
the start of the associated bucket,oi.id defines the position inside
the bucket and(oi.id × n) + P (Loi , rj) defines the global index
of rj in the stringS. The processing complexity and the memory
usage of the algorithm areO(m).

Algorithm 1 Full permutation indexing

IN: DomainD of N objects,
References listR of n elements,

OUT: Suffix array:MSA;
1. For eacho ∈ D
2. Loi =Create_Ordered_List(oi , R)
3. For eachr ∈ Loi

4. MSA[(rj .id×N) + oi.id] = (oi.id× n) + P (Loi , rj)

3.2 Searching
To retrieve the K-top results for a queryq,Lq has to be compared

with everyLoi using equation (1). Hence, we need the object-id
oi.id, the reference-idrj .id and theP (Loi , rj). This information
is encoded in theMSA. Therj .id is already defined as the MSA is
divided into buckets and each bucket has the global index of all suf-
fixes which start with the samerj . From eachMSA value, we can
extract theoi.id and theP (Loi , rj) as given in Algorithm 2. Lines
1-2 createsN accumulators and initialize it by zero. Line 3 creates
the ordered list for the queryq. Lines 4-5 define the bucket range
of each reference point in the query ordered list. Lines 6-7 get the
object-id and the position of the reference pointrj in the ordered
list of the object from the suffix value. Line 8 updates the accumu-
lator of the object found with the difference between the position
of the reference pointrj in the query and its location in the ordered
list of the object "RefPos". Lines 9-10 sorts the objects based on
the accumulators values and send the results back to the user. The-
oretically, the complexity isO(m) for filling the accumulators and
O(N logN) for sorting them as we use quick sort algorithm.

3.3 Using nearest permutations
The information given by the ordering of the farthest reference

points is not critical. Hence, in order to reduce the memory used,
we can use only the nearest reference points to identify the objects.

Algorithm 2 Full permutation searching

IN: Query: q,
References listR of n elements,
Metric Suffix array:MSA;

OUT: Sorted Objects list:out
1. Create a list of accumulatorsA[0 . . . N ]
2. Set accumulators values to0
3. Create the query ordered listLq

4. Forrj ∈ Lq

5. Fork ← (rj .id×N) to k < (rj .id×N) +N
6. Oid = (MSA[k]− (MSA[k] mod n))/n
7. RefPos= (MSA[k] mod n) + 1
8. Acc[Oid] = Acc[Oid] + |P (rj , Lq)−RefPos|
9. sort(Acc)
10. out← Acc

LO0=(r2,r1)   LO1 =(r2,r1)   LO2=(r2,r1)   LO3=(r1,r0)   LO4=(r0,r1)   LO5=(r1,r2)   
LO6=(r0,r1)   LO7=(r0,r1)

Ordered lists using nearest two reference points:

r2 r1 r2 r1 r2 r1 r1 r0 r0 r1 r1 r2 r0 r1 r0 r1String:
Indexing: 0 151413121110987654321

MSA 7 8 12 14 1 3 5 6 9 10 13 15 0 2 4 11

P(LOi,rj): 0 101010101010101
Obj 0 Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7

bukr0 bukr1 bukr2

Figure 3: Example of MSA using nearest reference points

This can be done by distributing the reference points inD and every
object is indexed with respect tōR, whereR̄ ∈ R and represents
then̄ reference points closest to the object. The size of the MSA is
m̄ = n̄×N , wheren̄ = |R̄| andN is the number of objects. Since
R̄ is not unique and is based on the location of the object, buckets
are not of the same size. Hence, indexing and searching must be
adapted as described next. Figure 3 shows an example of indexing
using the nearest reference objects.

3.3.1 Indexing
Count sort is used for indexing using the nearest permutations.

The basic idea is to determine, for each suffix, the number of suf-
fixes located before it. This helps placing the suffix value directly
into its position in the MSA. In Algorithm 3, lines 1-2 createan
arraybuk_count of sizen and initialize it with zero to count the
number of occurrences of each reference points in all the ordered
lists. Lines 3-6 create and scanLoi ∀oi ∈ D element by element.
Once a reference pointrj is found,buk_count[rj ] is updated. Ac-
cordingly, the size of each bucket is defined. Lines 7-11 define
the start and the end of each bucket. Since buckets are contigu-
ous, the left endl of bucketbukrj equals to the right end of the
previous bucketbukrj−1

.r. Consequently, the right endr of the
bucket equals:bukrj .r = bukrj .l + buk_count[rj ]. Lines 12-14
build theMSA. CounterCri is created and initialized with zero for
each reference pointrj to define the location in its bucket. Ordered
lists are scanned element by element and placed directly in their
appropriate location in theMSA. Theoretically, the complexity is
O(2m̄) and the memory usage isO(m̄).

3.3.2 Searching
Similar to what is done in Algorithm 2, to rank the database ob-

jects for a queryq, we need three items: the object-idoi.id, the
reference-idrj .id and theP (Loi , rj). After creatingLq , the buck-



Algorithm 3 Nearest permutation indexing

IN: DomainD of N objects,
References listR of n elements,

OUT: Suffix array:suff
1. For eachj ←− 0 to n
2. buk_count[j] = 0
3. For eacho ∈ D
4. Loi =Create_Ordered_List_With_Nearest_References(oi , R)
5. For eachr ∈ Loi

6. buk_count[rj ] + +
7. buk0.l = 0
8. buk0.r = buk0.l + buk_count[0]
9. For eachj ←− 1 to n
10. bukrj .l = bukrj−1

.r
11. bukrj .r = bukrj .l+ buk_count[rj ]
12. For eacho ∈ D
13. For eachr ∈ Loi
14. MSA[bukrj .l+ (Crj ++)] = oi.id× n̄+ P (Loi , rj)

ets in the MSA are scanned based on the order of the reference
points inLq. In Algorithm 4, lines 1-2 create the accumulators and
initialize them by(n̄+1)× n̄, which is the maximum possible dis-
tance between an object and the query. Lines 4-8 access the active
buckets whose reference points appeared in the query ordered list
and update the accumulators, where(n̄+1) shows that a reference
point presented inLq and |P (Lq , rj)−RefPos|, gives the differ-
ence between the position ofrj in Lq andLoi . Lines 9-10 sort and
gives the output. Theoretically, the complexity isO(m̄) for filling
the accumulators andO(N logN) for sorting them.

Algorithm 4 Nearest permutation Searching

IN: Query: q,
References listR of n elements,
Suffix array:suff;

OUT: Sorted Objects list:out
1. Create a list of accumulatorsAcc[0 . . . N ]
2. Set accumulators values to(n̄+ 1)× n̄
3. Create the query ordered list based on the nearest referencesLq

4. Forr ∈ Lq

5. Fork ←− MSA[bukrj .l] to MSA[bukrj .r]
6. Oid = (MSA[k]− (MSA[k] mod n̄))/n̄
7. RefPos= (MSA[k] mod n̄) + 1
8. Acc[Oid] = Acc[Oid]− (n̄+ 1) + |P (Lq, rj)−RefPos|
9. sort(Acc)
10. out← Acc

4. MULTI-CORE AND DISTRIBUTED MSA

4.1 Multi-Core Implementation
Currently, most computers are multi-core. For indexing, openMP

[2] does not support parallel I/O. Hence, we face a bottleneck in ac-
cessing the data file. We solve this problem by setting the data read
part as a critical region, which means only one thread can access
the file at a time. Creating the ordered list, sorting it, and filling the
MSA is done in parallel for different objects. As a result, weobtain
sub-linear speedup, as shown in the results section.

For searching, we can parallelize the ’for’ loops at line 4 orline
5 in algorithms 2 and 4, by distributing the for loop on the avail-
able processes. For parallelizing the ’for’ loops at line 4 in the two

algorithms, we face a race condition problem as some processes
access the accumulator of the same object, but in different buckets,
which affect the final results. Our solution is to set the accumulator
update functions in line 8 in the two algorithms as a criticalregion.
Hence, most of the time is consumed in organizing the access of the
processes to the critical region as the rest of work is simple. The
best speedup is obtained by parallelizing the ’for’ loops atline 5 in
algorithms 2 and 4 as we do not need the critical region. For ev-
ery bucket, all the processes update the accumulators for different
objects separately.

4.2 Distributed Implementation
The data domainD of N objects is randomly divided into sub-

domains of equal sizesD0 . . . Dp, wherep is the number of parallel
processes. Usingn reference points known by all processes, every
process builds its own MSA based on the global reference points
and the partial data it has access to. As a result, we obtain multi-
ple partial MSAs, where each process is responsible for a different
MSA representing only a sub-domain of the full dataset and not
related to the other MSAs (see figure 4). Hence technically, we di-
vide the data file into subfiles and each file is handled on a different
machine separately in parallel.

To answer a queryq, all the MSAs need to be scanned. A broker
process accepts query requests and broadcasts them to all other pro-
cesses. Upon reception, each process starts to index the query with
respect to the list of the global reference points and to apply the
search on its local MSA. Once done, every process sends its local
accumulators to the broker process. The broker concatenates the
accumulators from different processes and sorts the objects based
on their accumulator values. More formally, the ’for’ loopsfrom
line 4 to line 8 in algorithms 2 and 4, are running in parallel on dif-
ferent parts of sizeN/p, whereN is the number of objects andp is
the number of processes. There is an extra over head, which isthe
communication timetp needed to receive the partial accumulators
from different processes. Hence, theoretically the overall complex-
ity is O(N/p)n + tp for full permutation andO(N/p)n̄ + tp for
nearest permutation. MPI [7] is used for our implementation.

Process  0

Process  1

r2 r1 r0 r2 r1 r0 r2 r1 r0 r1 r0 r2String 0:
Index: 0 1110987654321

1 32132132132
Obj 0 Obj 1 Obj 2 Obj 3

r0 r1 r2 r1 r2 r0 r0 r1 r2 r0 r1 r2

21321321321 3
Obj 4 Obj 5 Obj 6 Obj 7

0 1110987654321

MSA 0: 2 5 8 10 1 4 7 9 0 3 6 11
bukr0 bukr1 bukr2

MSA 1: 0 2 6 9 1 3 7 10 2 4 8 11
bukr0 bukr1 bukr2

String1:
Index:

P(LOi,rj):

P(LOi,rj):

Figure 4: Example of multiple partial MSA for 8 objects and 2
processes.

5. EXPERIMENTAL RESULTS
In [13], we proposed a distributed implementation of the MIF

[1]. We were able to achieve high speed up using 40 cores, but
we were facing a problem with memory consumption. Here, we
compare the performance of our MSA to the performance of MIF
as our baseline structure. We have implemented the MSA using
C++. The sequential and the multicore experiments were doneon



an 8-core machine holding 32Gb of memory and a TeraByte storage
capacity. The distributed experiments were done on a computer
cluster of 20 machines, each one has 8Gb of memory and 2 cores
and a disk of 512GB. Our experiments are based on two different
datasets. The first dataset consists of 2,076,399 objects. It was used
to compare the MSA and the MIF regarding indexing and searching
times for sequential and multicore implementations. Also,we show
the recall and the position error (PE) [18] using full and nearest
permutations. The second dataset consists of 4,594,734 objects and
was used for large scale distributed indexing. The two datasets are
visual shape features (21-dimensional), which were extracted from
the 12-million ImageNet corpus [3].

5.1 Recall and position error
We measure the average recall and position error based on 10

different queries selected randomly from the datasets. Figure 5
shows the average recall and position error using full and near-
est permutations. The selection of the reference points is done by
defining a certain threshold, where the minimum distance between
any two references is greater than this threshold value. Fornear-
est permutation indexing, we used the closest half reference points.
For instance, if we have 1000 reference point, we chose the nearest
500 points only. For full permutations, we can see that increasing
the reference points does not really affect the recall aftera certain
value. In our dataset, after 1000 reference points using full per-
mutation the recall stays constant. For nearest permutations, using
the closest 1000 out of 2000 gives higher recall value than using
1000 reference points for full permutation. The reason is that us-
ing 1000 reference points out of 2000 reference points makeseach
object identified by the nearest reference points only, which make
a unique identification of each object and leads to an improved re-
call. Hence, we empirically derive that the best ratio between the
number of nearest reference points and the dataset isn =

√

(N/2)
and the closest reference points can be chosen out of2n reference
points. For position error, as we can see using half permutation
increases the PE, but it decreases when the number of closestref-
erence points increases.
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Figure 5: Recall and PE for K=100 using full and nearest half
permutations for 100, 500, 1000, 1500 and 2000 reference point.

5.2 Response time

5.2.1 Sequential and Multi-Core Implementation
Figures 6 and 7 show the indexing and the searching time respec-

tively. As we can see from the two figures, using full permutation,

MSA outperform MIF. Although theoretically, MSA has the same
complexity as MIF. The main reason is that handling the arrays into
the main and the cache memories is much better than handling the
inverted files. Also, our algorithm consumes half of the memory
consumed by MIF. For example, for 2’000 reference points, MIF
needs about 30Gb of memory while MSA needs 15GB. The reason
is that we encode, in each suffix array value, the position of the
reference point and the object-id instead of saving them as two sep-
arate values. Also, we can see that the running time decreases using
multicore for MIF and MSA, and still MSA outperforms MIF. Us-
ing nearest 1000 reference point out of 2000 reference point(which
gave the best recall value) the response time is 1.9 second.
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5.3 Distributed Implementation
Figures 8 and 9 show indexing and the searching time respec-

tively for 4,594,734 objects using MSA. As we can see, the time
decreases when the number of cores increases with the same recall
and PE. Using the closest 1500 points out of 3000 reference points,
we are able to retrieve the most similar objects in less than 1second
using 20 cores and with recall value more than 0.7.

6. CONCLUSION
We have presented the Metric Suffix Array data structure, which

is a novel data structure for permutation-based indexing oflarge
scale multidimensional data. MSA is adapted to work with full
and nearest permutations while saving half of the memory needed
for other permutation-based indexing data structures [1, 13, 4, 5].
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Also, we showed that the MSA outperforms the MIF. We stud-
ied the best ratio between the dataset and the reference points and
showed how this affects the recall and the position error.

Our current work focuses on proposing a further strategy to speed
up the searching using MSA. Also, we will propose some tech-
niques for selecting the reference points to improve the recall. For
the distributed implementation, we will provide other strategies for
distribution and seek the best possible performance.
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