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Abstract

This paper introduces a content-based information retrieval method inspired by the ideas of spreading
activation models. In response to a given query, the proposed approach computes document ranks as their
final activation values obtained upon completion of a diffusion process. This diffusion process, in turn,
is dual in the sense that it models the spreading of the query’s initial activation simultaneously in two
similarity domains: low-level feature-based and high-level semantic.

The formulation of the diffusion process relies on an approximation that makes it possible to compute
the final activation as a solution to a linear system of differential equations via a matrix exponential
without the need to resort to an iterative simulation. The latter calculation is performed efficiently by
adapting a sparse routine based on Krylov subspace projection method.

The empirical performance of the described dual diffusion model has been evaluated in terms of
precision and recall on the task of content-based digital image retrieval in query-by-example scenario. The
obtained experimental results demonstrate that the proposed method achieves better overall performance
compared to traditional feature-based approaches. This performance improvement is attained not only
when both similarity domains are used, but also when a diffusion model operates only on the feature-
based similarities.

1 Introduction

There have been developed numerous contributions that aim to integrate higher-level semantic information
into the information retrieval process so as to overcome problems arising due to synonymy, polysemy,
data sparsity and semantic gap. A broad range of research efforts in this field share a common modeling
apparatus of the vector space model and rely on the term-document matrix as a basic tool. Among these
approaches are the latent semantic analysis [8], methods for query vector expansion [14], techniques for
computing semantic kernels [7] and term proximities [23], as well as many other prominent contributions.

In our work we attempt to extend the traditional term-document matrix paradigm in the spreading ac-
tivation model context to make it more suitable for content-based digital media retrieval. We consider the
case when the documents in the collection at hand are associated with two classes of descriptors: low-
level feature-based, such as dominant color in a digital image, and high-level semantic, such as keywords
describing objects, location or a person shown. These two classes of document descriptors establish two
separate similarity domains in which documents can be compared. Arguably, using the similarities in both
of these domains and taking into account their inter-dependencies effectively may contribute substantially
to the successful retrieval of relevant documents. And this is what the method described in this paper strives
to accomplish. Below, we present an approach inspired by the spreading activation modeling ideas. The
method processes a search query by computing document ranks as their final activation values obtained
upon completion of a diffusion process. This diffusion process, in turn, is dual in the sense that it models
the spreading of the query’s initial activation simultaneously in two above mentioned similarity domains:
low-level feature-based and high-level semantic.

Naturally, there exist many relevant contributions that are focused on achieving similar goals, based
on analogous models or even share the same terminology [6, 12, 13]. One of these techniques has intro-
duced semantic diffusion kernels [12] derived from the duality of the vector space representation model
where a document can be seen as the counts of terms that appear in it, while a term can be regarded as
the counts of documents in which it appears. The method reuses the very same source of information (the
original term-document matrix) to augment the similarity of documents from the co-occurrence information
of terms and vice versa, providing the final document similarity matrix as an equilibrium point of such an
augmentation process. In contrast, the approach described in this paper does not specifically look to derive
the ultimate document similarity matrix from the term-document one. Instead, we introduce a diffusion pro-
cess that aggregates the information from two disparate external similarity sources with the term-document
co-occurrence data, and directly produces the ranking of documents in response to a query.

Some other important differences of the proposed method can be highlighted by comparing it with
the traditional spreading activation models [5, 6, 17]. These techniques have been designed to propagate
initial activation through a network of connected nodes, and are set to proceed repeatedly through a se-
quence of steps of preadjustment, spreading, postadjustment and termination. The iterative nature of such
an approach is likely to introduce a number of difficulties, especially in the target application domain of
content-based digital media retrieval. For instance, the solution may lose accuracy quickly by accumulating
errors from previous iterations; also, given the size of a typical collection containing thousands of images
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the computation may take too long to be applicable in interactive query-response scenarios. In addition to
that, pure spreading activation has limited practical use unless extra constraints on distance, fan-out, path
and activation are introduced [6]. This makes the closed-form mathematical modeling of the process more
complicated. In our method, we formulate the spreading activation as a diffusion process by means of an
appropriate approximation. This choice makes it possible to compute the final activation as a solution to
a linear system of differential equations via a matrix exponential without the need to resort to an iterative
simulation. The latter calculation is performed efficiently by adapting a sparse routine based on Krylov
subspace projection method. Finally, we would like to mention a technique that attempts to improve the
spreading activation model by taking into account second order term interactions derived from two-level
co-occurrence data [1]. The proposed approach differs from this method in the important respect that not
only second order but also all the higher order term interactions can be modeled in a unified fashion via a
diffusion process.

In the sections that follow, we provide a more detailed description of the proposed dual diffusion spread-
ing activation (DDSA) method. Section 2 will elaborate the main ideas behind the approach, derive its
problem formulation, and address some concerns as for its efficiency and parametrization. This will be
followed by the experimental results discussed in Section 3. Finally, conclusions and future perspectives
will be presented in Section 4.

2 Dual diffusion model of spreading activation

As mentioned previously, our work has been inspired by the model derived in the classical studies of the
associative retrieval [20] and mechanisms of human memory operations [19], known as spreading activation
model.

In its original form, the spreading activation model is a simple processing technique applied to a network
structure where related concepts are represented as connected nodes [5, 6, 17]. It works by propagating an
initial activation from some node(s) through the network via the association links according to the formula:

Inj =
∑

i

Outi Wij , (1)

where Inj is the total input at node j, Outi is the output of node i connected to node j, and Wij is the
weight describing the strength of association of the link connecting node i to node j. Subsequently, the
output of the node in question Outj is calculated as some function of its input Inj , and the process is
repeated for the remaining nodes in the network.

Our method builds upon the foundations of the spreading activation model in order to improve infor-
mation retrieval performance. The approach described below extends the framework so as to effectively
combine the similarity data from two disparate similarity domains corresponding to the two classes of de-
scriptors associated with the documents. This setup is motivated by the need to accommodate the fact that
in multimedia retrieval the documents are usually represented by low-level (image color, motion vectors,
etc.) and high-level (regular keywords, names, locations) features. The said combination of the two sim-
ilarity domains is accomplished by modeling the spreading activation as a diffusion process that occurrs
simultaneously in both of them.

An illustration of this idea is shown in Figure 1. Here, the document collection is shown to have 3 doc-
uments D1 . . .D3 indexed by 4 terms T1 . . . T4. The initial activation is located in node a1,2 corresponding
to term T2 in document D1. The diffusion process propagates the initial activation accross the terms of
D1 taking into account the high-level semantic similarities among T1 . . . T4. At the same time, an identical
diffusion process propagates the initial activation value for term T2 across the documents D1 . . . D3 in ac-
cordance with their low-level feature-based similarity, for instance, the dominant color in a digital image.
Both low-level and high-level similarity domains are represented by their corresponding pairwise similarity
matrices (not shown in Figure 1). The two diffusion processes, shown as arrows in Figure 1, compete simul-
taneously to propagate the initial activation throughout the term-document matrix. Much in the same way,
the process illustrated for a1,2 occurrs at every other entry of the matrix as well. Finally, upon completion
of this dual diffusion process, the resulting activation values in the term-document matrix provide a natural
way of ranking documents, ordering terms, performing document autoannotation and quantitative assess-
ment of degree of association between a given semantic concept and alternative low-level similarity feature
spaces, etc. However, in order to maintain the discourse focused and make the experimental evaluation
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Figure 1: An simplified illustration of the duality of the spreading activation in the proposed method.
Initial activation a1,2 is propagated via a diffusion process accross terms within document D1 according
to the high-level semantic similarities of terms T1 . . . T4 (shown as solid line arrows), as well as across the
documents through the low-level feature-based similarities of documents D1 . . . D3, (shown as dotted line
arrows). The arrows show the direction of the propagation of initial activation.

h

v

Figure 2: An illustration of the Torricelli’s Theorem that relates the velocity of efflux, v, through a hole in
the side of a filled tank and the current level in the tank, h, according to the formula: v =

√
2gh.

coherent, this paper we will only concentrate on the first possible application mentioned in the above list,
and hence will consider a single-term query-by-example retrieval scenario, where the relevance of a given
document to a certain query term is judged by the magnitude of its corresponding final activation value.

In the section that follows, we are going to describe the details of implementing such a dual diffusion
spreading activation method, including an appropriate modeling approximation, non-iterative computation
and estimation of the stopping criteria.

2.1 Fluid mechanics intuition

A natural way of modeling the diffusion process is to borrow some intuition from the disciplines of fluid
mechanics and hydraulics. Indeed, there exists a substantial body of research that can be applied in our case.
One of such research results is known as the Torricelli’s Theorem [16] that establishes the link between the
velocity of the outflow from, and the current level in a filled tank, as depicted in Figure 2. Using the above
theorem would definitely allow to model a diffusion process well in accordance with the fluid mechanics
paradigm. However, the non-linear dependence of the efflux velocity v on the current level h could lead to
a formulation complicated enough to prevent efficient computation. This is why we have chosen to assume
a linear dependence between the above two parameters, which has lead to the model that we discuss in the
following section.
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2.2 Problem formulation

Consider a collection of m documents {Di|i = 1 . . .m} indexed by n high-level semantic terms {Tj |j =
1 . . . n} and some low-level features. Let the low-level feature-based similarity domain be represented by
matrix K ∈ R

m×m such that:

K =











k(D1, D1) · · · k(D1, Dm)
k(D2, D1) · · · k(D2, Dm)

...
. . .

...
k(Dm, D1) · · · k(Dm, Dm)











, (2)

where k(Di, Dj) ∈ [0, 1] specifies the similariy of documents Di and Dj according to their feature-based
representation extracted automatically, e.g. from the analysis of image pixel colors, textures, etc. Also, let
the high-level semantic similarity domain be defined by matrix S ∈ R

n×n such that:

S =











s(T1, T1) · · · s(T1, Tn)
s(T2, T1) · · · s(T2, Tn)

...
. . .

...
s(Tn, T1) · · · s(Tn, Tn)











, (3)

where s(Ti, Tj) ∈ [0, 1] specifies the similariy of terms Ti and Tj according to their semantics, derived
from some external source, such as WordNet [15].

Then, let A ∈ R
m×n be the activation matrix whose initial non-zero values are set to a predefined

constant α > 0 in accordance with the query-by-example paradigm. That is, for a single-word query
defined by term {Tq|q ∈ 1 . . . n}, we establish a corresponding set of documents Q from the training data
set whose annotation includes Tq. Then, an element aij of A is assigned α if the training set document Di

belongs to query set Q and has term Tj in its annotation:

aij =

{

α if Di ∈ Q and Di has Tj ;
0 otherwise.

(4)

Alternatively, A can be thought of as a traditional term-document matrix, whose entries are initially zeroed
out with the exception of the rows that correspond to the query set Q and are set according to the available
annotation from the training data.

Finally, given the linearity assumption discussed in the previous section, we can model the dual diffusion
process by specifying the rate of change of the activation level at every entry of A in a way somewhat similar
in spirit to the traditional spreading activation model (1), as follows:

daij

dt
=

n
∑

l=1

ails(Tj , Tl) +
m

∑

l=1

aljk(Dl, Di). (5)

Here, (5) states that a given activation value aij will increase rapidly if there are high activation entries in A

corresponding to terms related to Tj within the same document Di. In addition to that, (5) indicates that aij

will also increase if there are other documents similar to Di in the low-level feature-based representation
that have high activation values corresponding to Tj .

We can rewrite (5) more compactly in the matrix form:

dA

dt
= ASB + KBA, (6)

where SB and KB are the balanced versions of matrices S and K given in (3) and (2), respectively. The
balancing of the two matrices is necessary to ensure that the conservation law holds, i.e. the total activation
in the system remains constant over time throughout the diffusion process. This constraint is enforced by
modifying the diagonal elements of matrices S and K such that:

sjj = −
n

∑

i=1,i6=j

sij , (7)

kjj = −
m

∑

i=1,i6=j

kij . (8)
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Apparently, (6) can be recognized as equivalent to a very popular problem frequently encountered in
mathematics, physics and engineering applications:

{

a(t)′ = Ma(t), t ∈ [0, τ ]
a(0) = a0,

(9)

where we reassign a = vec(A), M = In ⊗KB +SB ⊗ Im for appropriately sized identity matrices Im, In

and initial activation written in the form of a column vector a0. The analytic solution of (9) is given by

a(t) = etM
a0, (10)

which implies that the final activation at any termination time τ may be obtained by immediately computing
the solution via a matrix exponential, instead of running a costly and usually error-prone iterative simulation
that traditional spreading activation models have to resort to. Once the final activation has been computed,
the ranking of the of the documents with respect to query Tq is obtained simply by sorting the collection by
the magnitude of the values in q-th column of the activation matrix.

In the two sections that follow, we discuss some techniques for determining when the dual diffusion
process defined by (6) needs to be stopped, i.e. finding the termination time τ , and for computing solution
(10) efficiently.

2.3 Stopping criteria

In order to specify the stopping criterion of the above described diffusion process, it is helpful to consider
its behavior with respect to the admissible range of values of the termination time τ . On one hand, if τ

is chosen too close to zero, the diffusion barely has a chance to propagate any activation, because it stops
too soon. On the other hand, if τ is set too high, the result will not be of any practical use either, since the
initial activation will have propagated and dissipated evenly throughout the system, rendering the activation
process meaningless. Thus, the value of τ is to be selected so as to avoid the above two extremes.

While it is always possible to suggest a parameter estimation technique through the use of a validation
data set, in our approach we make a conjecture as for the appropriate choice of τ that has proved to be quite
accurate in practice and was confirmed by the experimental results discussed in section 3. Namely, we set
τ to the shortest possible time necessary for the diffusion process to deplete any single activation source
almost completely, until it reaches γ = 1% . . . 5% of its initial value:

τ = min
aij 6=0

(

log γ

sjj + kii

)

, (11)

where i = 1..m, j = 1..n, γ is the target residual percentage level, and aij 6= 0 is the condition that ensures
that only the sources of initial activation are considered.

2.4 Efficient calculation of final activation

As mentioned earlier, the final activation values can be obtained immediately from (10) by computing a
matrix exponential. However, a direct approach could be inappropriate due to efficiency reasons. Indeed,
the exponential power series expansion can be extremely costly to compute, the principal matrix M for
thousands of documents and terms extended via Kronecker products will not likely fit in computer memory
even for document collections of moderate size, and, most importantly, the result of matrix exponentiation
is actually not needed in the explicit form, since solution (10) that represents the final activation requires
only the action of the matrix exponential on a vector of initial activation.

Taking into account the above considerations, we have chosen a method for computing matrix exponen-
tials proposed in [22], with subsequent adaptation to the problem at hand. The main underlying principle
of this method is to approximate

a(t) = etM
a0 = a0 +

(tM)

1!
a0 +

(tM)2

2!
a0 + · · · (12)

by an element of the Krylov subspace:

Kp(tM, a0) = Span{a0, (tM)a0, . . . , (tM)p−1
a0)}, (13)
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Table 1: Regular keyword terms and their statistics of occurrence in Carole’s data set.
ocean 282 trees 347 crown 47
balloons 29 balloon 44 carousel 42
car 54 kitty 15 classroom 130
drawing 15 team 10 buildings 29
street 71 bike 19 billboard 21
sailboat 78 rocks 84 dolphins 22
bed 27 parrot 31 leaves 24
flowers 146 beach 99 deck 31
pool 158 flag 21 sunset 15
sunrise 26 ball 52 poles 87
tracks 59 snow 82 fields 57
trail 14 rainbow 20 church 26
doll 12 birthday 87 lagoon 32
pond 27 kitchen 54 umbrella 10
cow 13 table 18 tricycle 11
crib 11 river 19 peaks 13
forest 33 home 24 driveway 16
waterfall 14 vineyards 13 presents 14
orca 24 crowd 13 lake 13

where p, the dimension of the Krylov subspace, is far smaller than mn, the order of the principal matrix M .
Another valuable property of this computational technique is the ability to attain the final result by using
only the action of the principal matrix on a vector throughout the intermediate calculations. Thus, in order
to achieve better efficiency, we take advantage of this quality by adapting the algorithm so that principal
matrix M never needs to be formed explicitly:

Ma = vec(KBA) + vec(ASB) (14)

With the above modifications in place, the matrix exponentiation algorithm achieves near-realtime perfor-
mance whereby the prototype implementation computes the final activation for the collection of over five
thousand images in less than a minute’s time.

3 Experimental results

For an experimental evaluation of the proposed method on the task of content-based image retrieval we have
selected a subset of Carole’s annotated digital image collection [3]. This data set consists of m = 5222
images each annotated with regular keywords that form a vocabulary of n = 57 unique terms appearing
in the annotation corpus at least ten times. The overview of the term content of this data set together with
the occurrence statistics is summarized in Table 1. For this data set, the two similarity domains are rep-
resented by their respective similarity matrices: feature-based and semantic. The former matrix, K, has
been constructed by computing all pairwise similarities among images based on their tiled HSV color cor-
relogram content [11], while the latter, S, has been computed with the use of pairwise relatedness measure
among image annotation keywords using the method developed by P. Resnik [18]. The actual similarity
values in both S and K were mapped into the target range of [0, 1] by applying a generic Gaussian distance
substitution kernel [10]. Once computed, S and K were kept fixed throughout all of the experiments.

The data were subdivided into the training and testing parts in such a way that for every unique query
term {Tq|q ∈ 1 . . . n} there were up to ten training images, while the remaining ones were used as a test
set. The choice to use a relatively small number of training images was motivated by the intention to make
the experiment configuration resemble a typical query-by-example scenario, where the user selects only
a few relevant images to formulate a query. The experiments were to be set up so as to make it possible
to evaluate the proposed dual diffusion spreading activation method together with a features-only baseline
technique, and compare their ability to retrieve relevant images for each individual query term Tq. In order
to do so, each single-word query was represented by a set of images Q from the training set that had been
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Figure 3: An 11-point average precision diagram of retrieval performance of the proposed method (solid
line) and the baseline approach (dashed line).

annotated with Tq. For both methods, the performance was measured in terms of non-interpolated average
precision [2], which is the average of precision values Pi for each of the testing set images relevant for
a given query. In the case of the proposed method, the Pi quantities were calculated from the ranking
produced by sorting the test images by the final activation values aiq corresponding to the query term Tq .
These activation values, in turn, were obtained by setting up an initial activation matrix as described in
Section 2.2, and running the diffusion process until completion. As for the baseline method, the Pi were
derived from the ranking determined by sorting the test images according to the their best feature-based
similarity to any image from query set Q, i.e. maxz∈Q k(Dz, D

test
i ) for every test image Dtest

i , without
taking into account the semantic information.

The results of these experiments, shown graphically in terms of 11-point average precision in Figure 3,
render the non-interpolated average precision of 21.25% for the baseline and 24.99% for the proposed
method after averaging over all of the query terms. While this improvement is an appreciable outcome
in itself, the real differences between the two compared methods may only be seen clearly by examining
side by side query terms and the actual terms from the annotation of the top ranked test images, as shown
in Table 2. In other words, this table gives examples of query terms together with the terms a particular
query managed to elicit as the annotation associated with the top ranked retrieved images of the test data
set. As Table 2 demonstrates, the proposed DDSA method retrieves images that are more semantically
coherent with the query. For instance, query term bed retrieves images annotated with crib and doll in the
proposed DDSA method, whereas the baseline approach that ignores the high-level semantic information
places images annotated with rocks and street onto the top ranked list.

Because of the significant differences in the number and quality of related terms retrieved by the pro-
posed and baseline approaches, we performed additional experiments with slight modifications of the as-
sessment criteria. Namely, in order to account for the contribution of the related terms, we introduced a
non-interpolated average semantic precision, that would average the precision values of the top fifty im-
ages weigthed by their semantic similarity to the query term. Similarly, we define semantic recall as the
total weight of semantic similarity of test images to the query terms, which accounts for the test images
that had been annotated with terms either exactly the same as, or semantically similar to that of the query.
The results of these experiments render the non-interpolated average semantic precision of 29.66% for the
baseline and 37.62% for the proposed DDSA method after averaging over all of the query terms. As one
may expect, there is a more significant overall improvement, since the contribution of the sematically re-
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Table 2: Examples of the true annotation terms of the top ranked test images for the proposed method
(DDSA) and the baseline

Query term Baseline DDSA
bed bed, rocks, street bed, crib, doll
balloons balloons balloons, balloon,

doll
bike bike, rocks, water-

fall, trees, ocean,
street

bike, tricycle, car,
sailboat

flowers trees, deck flowers, trees, vine-
yards, fields

pond pond, trees, deck,
rocks

pond, lake, lagoon,
ocean, river

Table 3: Summary of the experimental evaluation
Performance
measure

1-class SVM SVDD Baseline DDSA

Precision 15.44% 15.50% 29.66% 37.62%
Recall 10.77% 10.93% 18.53% 24.19%

lated terms has now been taken into account. In addition to that, we observe that the overall semantic
recall measure increases as well. For the sake of providing a more complete evaluation, we also tested the
methods of one-class SVM [4, 21] and support vector data description [24, 25] (SVDD) applied directly on
matrix K, even though these techniques could be considered to be beyond the scope of this paper. Indeed,
these methods are primarily designed for classification tasks instead of ranking1 , and make no attempt to
take advantage of the semantic information. This fact helps explain their unremarkable performance on the
prblem at hand, which appears to be in accordance with previously reported results on the use of one-class
approaches in content-based image processing [9]. The summary of these experiments is given in Table 3.

In addition to the above evaluation, we have also investigated the performance of the proposed method
with respect to its dependence on the choice of the parameter τ that specifies the termination time of the
spreading activation process. The results of these experiments, shown in Figure 4, have confirmed the
validity of our conjecture to estimate τ as the shortest time to near-depletion of a single activation source,
as per (11). As expected, Figure 4 shows that setting τ either too low or too high reduces the performance
gain of the proposed method in comparison with baseline. However, we also observe that the range of the
target residual activation level γ suggested in section 2.3 does indeed correspond to the region of the best
performance improvement. Finally, we also have found that the proposed method outperforms the baseline
even when a diffusion process operates only on the feature-based similarities, albeit by a small margin,
which positions this contribution as a comparable alternative to the traditional feature-based retrieval.

4 Conclusion and
future perspectives

We have introduced a content-based information retrieval method inspired by the ideas of spreading activa-
tion models. In response to a given query, the proposed approach computes document ranks as their final
activation values obtained upon completion of a diffusion process. This diffusion process is dual in the
sense that it models the spreading of the query’s initial activation simultaneously in two similarity domains:
low-level feature-based and high-level semantic. The formulation of the diffusion process relies on an
approximation that makes it possible to compute the final activation efficiently as a solution to a linear sys-

1We have adapted the implementation of one-class SVM and SVDD classifiers for the ranking task by sorting the documents
according to the raw output of the classifier decision function trained with the default parameters. Other popular classification tech-
niques, such as two-class SVM, were deemed not applicable due to their requirement to have both positive and negative data instances
for training.
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Figure 4: Solid line shows the dependence of the non-interpolated average semantic precision of the pro-
posed method on the residual percentage level γ used to compute the termination time τ of the spreading
activation. The dashed line shows the performance of the baseline feature-based retrieval for comparison.

tem of differential equations via a matrix exponential, without the need to resort to an iterative simulation.
The empirical performance of the described dual diffusion model has been evaluated in terms of standard
non-interpolated average precision and recall measures, together with their semantics-aware versions, on
the task of content-based digital image retrieval. The obtained experimental results demonstrate that the
proposed method achieves better overall performance compared to traditional feature-based approaches.

As a part of the further development of the proposed method, we have already begun investigating
its extensions to multi-ple-stage usage scenarios with relevance feedback, modeling of the activation to
include both positive and negative examples, combinations of several terms in a query, equivalent kernel
formulations, and several other closely related aspects of the method described here.
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