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Abstract—This work concerns the problem of asymmet-
ric classification and provides the following contributions.
First, it introduces the method of KDDA - a kernelized
extension of the distance-based discriminant analysis tech-
nique that treats data asymmetrically and naturally ac-
commodates indefinite kernels. Second, it demonstrates
that KDDA and other asymmetric nonlinear projective ap-
proaches, such as BiasMap and KFD are often prone to an
adverse condition referred to as the false positive projection ef-
fect. Empirical evaluation on both synthetic and real-world
data sets is carried out to assess the degree of performance
degradation due to false positive projection effect, deter-
mine the viability of some schemes for its elimination, and
compare the introduced KDDA method with state-of-the-
art alternatives, achieving encouraging results.

Index Terms—kernel methods, discriminant analysis

I. INTRODUCTION

SYMMETRIC classification considers a learning

problem where a given target class must be distin-
guished from all of the other classes. In this scenario, the
samples from the target class, usually referred to as posi-
tive class, and the rest of the data, referenced as the neg-
ative class, are not treated equally due to substantial dif-
ferences in prior probabilities, misclassification costs, etc.
Such distinction, when modeled explicitly, has been previ-
ously shown to improve classification accuracy for under-
sampled and unbalanced data sets [1], [2], [3].

Situated in the context of asymmetric classification, this
paper provides the following contributions. First, it intro-
duces the method of KDDA - a kernelized extension of the
distance-based discriminant analysis technique with asym-
metric data treatment that admits indefinite kernels. Sec-
ond, it demonstrates that KDDA and other nonlinear pro-
jective approaches, such as BiasMap [3] and Kernel Fisher
Discriminant, KFD [4], are prone to an adverse condition
referred to as the false positive projection effect. An unde-
sirable consequence of the said condition results in sizeable
areas of the input space being erroneously associated with
the target class. Using an illustrative geometric interpreta-
tion, we study the circumstances that lead to false positive
projection effect, and consider possible strategies for its
mitigation.

Extensive experiments are carried out on both synthetic
and real-world data sets to help assess the degree of perfor-
mance degradation due to false positive projection effect,
determine the viability of different schemes for its elim-
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ination, and compare the proposed KDDA method with
state-of-the-art alternatives.

II. KERNEL DISTANCE-BASED DISCRIMINANT ANALYSIS
A. DDA overview

The approach of distance-based discriminant analysis
(DDA) [5] has been shown to improve classification perfor-
mance as a result of the chosen non-parametric formulation
focused on pairwise inter-observation distances, robustifi-
cation of some of the interpoint distances, and an inherent
feature selection component. Relying on an asymmetric
formulation, the method derives a linear transformation
T by iteratively optimizing an approximation of the loga-
rithm of the following criterion:
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where Nx, Ny are the numbers of observations in data
sets X and Y that represent positive and negative classes,
respectively, the numerator and denominator of (1) char-
acterize the geometric means of the within- and between-
class Euclidean distances dz‘-/}/ , dﬁ, parametrized by T
and defined as d}f = \/(x; —2;)TTTT (z; — x;) and df} =
V(@i —y))TTTT (z; —y;), respectively, for {z;} % € R,
{yj}jy:yl € R™, and ¥(-) denotes a modified Huber robust
estimation function [6] that mitigates the influence of out-
liers and helps avoid numerical difficulties due to zero
length transformed distances. The theoretical underpin-
nings motivating the above formulation become clear when
a logarithm of (1) is considered. Indeed, logJ(T'), being
a weighted sum of log-barrier functions, may be viewed as
an extended formulation of analytic center machine (ACM)
method that finds a separating hyperplane as an analytic
center of the classifier version space [7].

In the below sections, we address the limitations of the
DDA linked to its reliance on Euclidean distances and lin-
earity of the sought transformation by introducing KDDA,
a kernel-based extension of the technique.

B. Kernelized Distance-based Discriminant Analysis

Let us suppose that there is a space # where samples
of training data can be mapped via ¢ : R® — &, such
that there exists a kernel function k(z,y) = (®(z))T ®(y),
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where x,y € R™ and k£ : R” x R" — R. We will also assume
that the discriminative transformation is sought in & as
a projection matrix w of size [z x d], where Az is the
dimensionality of %, and d is the dimension of the derived
discriminative projection subspace, such that the columns
of w lie in the span of all training samples mapped in .%:

w= [Z az(-l)q)(zi) Za§2)¢(2i) Zagd)fl)(zi)] )
% % % (2)

where z; is one of the Nx + Ny samples from the train-
ing data compound matrix Z = [ X Y } The distances
between images of samples « and y projected from # by
solution w are thus expressed as:

P, (w) = (2(z) — 2(y))" ww” (2(z) — 2(y))

d N ?
= Z (Zaz(.j)(k(zi,x) - k(a,y))) )

In matrix notation (3) can be simplified as:
_ T
92,(w) = 92,(P) = tx (PT H,, P) (1)

where P € RV*4 is the sought nonlinear transforma-
tion represented as a matrix collecting all of the al(.j)
coefficients, H,, = (K, — K,)(K; — K,)T, and K, =
[k(21,5),k(22,59),...,k(zn,s)]" denotes a vector of kernel
evaluations for sample s over all of the training data.

In view of (4), the logarithm of the DDA optimization
criterion (1) can now be expressed in terms of distances
projected from a richer, possibly infinite-dimensional fea-
ture space Z:

Nx Nx
_ 2 w
log J(P) = Nx(Nx—1) ;j;lloglll(%j (P))
Nx Ny

_ leNy Z Z log 95 (P) (5)
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The treatment of the obtained criterion differs only slightly
compared to the linear case. Similarly to the way it is
done in the DDA [5], we express convex parts of the cri-
terion by their respective piece-wise linear approximations
majorized by quadratics [8], while the concave parts are
linearized. The former simple algebraic manipulation re-
lies on the Cauchy-Schwarz inequality, while the latter is
a direct consequence of the concavity of the log-function?,
whose combined application leads to the following approx-
imation:

_ 1 _
:U/logJ(P;P) = mtr (PTK)(B(P)K%;P)
1
+mtr (PTnyCKg;YP)
NNy tr (PTKxyG(P)K%, P)
+const, (6)

! For any # > 0 we have: log(z) <z~ 1z +log(z) — 1.

where P is the current solution, Kx, Kxy are Gram ma-
trices of kernel inner products evaluated over X and all
data, respectively, and B, C, G are positive semi-definite
design matrices independent of P. Elements b;; of B are
defined as:

Wij e g
v E) T
bij: Nx (7)
— > b if =g
k=1,k#i

where w;; is a weight of the Huber function majorizer,
that in this case is equal to 1 if \11(91-?/(15)) is less than the
robustness threshold ¢, or ¢/ \I/(_@ZVJV (P)) otherwise. For
matrices C' and G, their non-zero elements m;; are defined
as:

Tij for i € [1; Nx]
and j € [Nx + 1;N],
Tij fOI"L'E[Nx—I—l;N]
mi; = and j € [1; Nx], (8)
Nx+Ny
- Z mg,  for i =7,
k=1 ki

where 7;; is equal to —1 and —1/ (95(]5))2 for C' and G,
respectively.

The approximations used to derive pog. (P, P) are
chosen so as to ensure that the resulting expression’s
value is never less than the objective to be minimized,
and thus provdies an upper bound of the criterion (5).
By optimizing (6) iteratively, every subsequent iteration
achieves a goal function value that is better or at least as
good as the one from the previous iteration, which leads
to covergence under the practically reasonable objective
boundedness assumption. This iterative process has
been previously shown to attain more robust as well as
better quality local minima, compared to the standard
optimization techniques, such as gradient descent and
SQP with trust region approximations. More formally,
such an iterative scheme that constitutes the core of the
KDDA, the kernelized extension of the distance-based
discriminant analysis method, can be written as the
following algorithm:

Algorithm 1. KDDA
1. Assign a starting point P = Py € RV*4
set convergence tolerance ;
2. Find a successor point P :
P, = argminp piog (P, P),
subject to a regularization constraint;
. If log J(P) —log J(Ps) < ¢, then stop;
4. Set P = P, go to 2.

w

III. FALSE POSITIVE PROJECTION EFFECT
A. Geometric illustration

We now turn to the discussion of the false positive projec-
tion effect, a condition that often arises when a projective
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Fig. 1. A sketch of the false positive projection of region A’.

nonlinear classifier utilizing a Gaussian kernel learns a de-
cision function that erroneously associates regions of the
input space with the positive class.

A sketch of this adverse effect is shown in Figure 1.
Here, an asymmetric projective nonlinear classifier, such
as KDDA or BiasMap, learns a discriminative projection
IT that ensures maximum compactness of the positive class
observations, depicted as crosses, relative to the scatter of
the negative class observations, depicted as circles. One
may notice, however, that the obtained decision region in
the projection plane II corresponds to two distinct parts of
the spherical mapping manifold in feature space %#: A and
A’. In this setup, all test data mapped into A’ are classi-
fied as positive, assuming such mapping is possible [9], even
though the region contains none of the training samples of
the positive class to support such a decision, and likely cor-
responds to the input space areas where the negative class
is far more probable. Thus, a false positive projection of
A’ takes place. Some examples of the occurrence of this
adverse condition with KDDA, BiasMap and KFD classi-
fiers are demonstrated on simple 2D data sets in Figure 2.
The data samples belonging to the positive and negative
classes are shown as crosses and circles, respectively, while
yellow-colored areas highlight the regions of input space
classified as positive.

Alternatively, the false positive projection occurrence in
the KDDA approach may be thought of as caused by a
considerable multiplicity of solutions z* of ®(z*)Tw = u,
for w € U, where U is a region of projection of positive ex-
amples in II. While this conjecture certainly merits a sep-
arate investigation into preventive modifications such as
multiplicity-reducing signed distance inequalities, its uni-
versal applicability is yet to be established. Therefore, in
the following discussion we will focus only on the method-
independent post-processing strategies, i.e. the techniques
that do not alter the method in question, but are applied
once the learning process has been completed.

B. Line tracing elimination strategy

In order to summarize the description provided in the
previous section and be able to formulate a simple post-
processing strategy for elimination of the false positive

projection effect, we make an observation analogous to
that used in the cluster assignment rule of the support
vector clustering method, SVC [10]: a data sample is
subject to false positive projection if it is classified as
positive, but lies across the decision boundary with respect
to all of the positive class training samples. This prompts
a straightforward strategy based on sampling or “tracing”
classification decisions along the simplest possible linear
paths between a test sample and positive class training
data, leading to the following algorithm for detecting and
rejecting the predictions on the test samples erroneously
classified as positive.

Algorithm 2. FPP elimination by line tracing

1. Obtain a candidate test sample ¢
classified as positive;

2. Select sets £; = {A\t+ (1 —N)z; : A € [0,1]},
Vr; € X,1=1...Nx;

3. If each of £; has a sample classified as
negative, declare false positive projection
and reject positive classification decision on t.

Fig. 3. Applying line-tracing strategy for the false positive projection
(FPP) effect elimination: positive classification decision is accepted
for T1, but rejected for Th

An illustration of the above algorithm applied to the
KDDA method is shown in Figure 3. Here, two sample
straight lines are traced in the input space from candia-
date test points 77 and T5. While a positive classification
decision is retained on 77, it is rejected on T, since on ev-
ery straight line connecting it to the positive samples of the
training data there exist points classified as negative. The
latter fact is detected by verifying the classification deci-
sions in the learned nonlinear projection, on points sam-
pled from sets £; using a simple uniform sampling tech-
nique as adoped in the SVC method, and switching to a
Newton-Raphson root-finding routine when necessary.

C. Filter classifier elimination strategy

The simplicity of the above described elimination strat-
egy comes at a price of having to impose crude linear
constraints on the obtained decision boundary, which may
negate the benefits of learning a complex nonlinear classi-
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(c) BiasMap

(d) Kernel Fisher Discriminant

Fig. 2. An illustration of an ideal class separation boundary (2(a)) and examples of the false positive projection (FPP) effect occurrence in
various nonlinear projective methods, (2(b)-2(d)). Input space regions subject to FPP are denoted as A’. All methods use Gaussian kernels

with o = 2.

fier. For that reason, we also consider a filter classifier elim-
ination strategy, implemented by introducing a high-recall
add-on classifier that limits the input space domain admis-
sible for positive classification. That is, a given test sample
must be predicted as positive by both classifier in question
and the filter. Practically, the filter is implemented as a
multiple-hyperplane classifier [11].

IV. EXPERIMENTAL RESULTS

First, we conducted a series of experiments on the syn-
thetic nested cuboid data sets, an 2D example of which
was earlier shown in Figure 2(a). The positive and neg-
ative class observations were sampled inside and outside
of randomly generated cuboids with the imbalance ratio of
100, and submitted to classification by KDDA, K-BiasMap
and KFD using a Gaussian kernel with ¢ = 2. Due to sub-
stantial class imbalance, the classification performance is
separately calculated over the positive and negative class
instances. The true positive rate a™, or sensitivity, is the
fraction of the positive class samples predicted correctly.

Similarly, the true negative rate a~, or specificity, is the
fraction of the negative class samples predicted correctly.
The overall performance is thus assessed by evaluating ge-
ometric mean accuracy GM = v/at x a~ that takes into
account prediction accuracy on both classes [12], and speci-
ficity SP = a~ designed to measure the effect of false pos-
itives on classification performance. The results achieved
by the three methods alone (denoted none, meaning no
FPP elimination strategy is used) as well as their perfor-
mance enhanced by the FPP elimination techniques (de-
noted tracing and filter, respectively) are listed in Table I.
The reported figures demonstrate a statistically significant
improvement in specificity for KDDA and KFD methods
leading to an overall geometric mean accuracy increase,
while at the same time pointing out the overly conserva-
tive nature of the BiasMap method where the changes are
not significant.

For our content-based multimedia retrieval experiments
we chose ETHZ80 collection [13], containing 3280 high-
resolution color images whose visual information was rep-
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TABLE 1
GM ACCURACY AND SPECIFICITY (IN %%) FOR NESTED CUBOID SYNTHETIC DATA SET

None Line tracin Filter
Method  —&p1 SP GM | SP GM SP
KDDA 70.0 96.6 70.9 99.6 75.4 99.6
(£2.4) (£1.1) (£2.7) (£0.1) (£2.7) (£0.2)
BiasMap | 55.3 99.1 54.7 99.5 95.3 99.6
(£3.0) (£0.5) (£3.2) (£0.2) (£3.3) (£0.1)
KFD 65.1 73.3 76.5 99.6 75.3 99.7
(£3.5) (£5.9) (£2.6) (£0.2) (£3.2) (£0.1)
TABLE II
GM ACCURACY AND SPECIFICITY (IN %%) FOR ETHZ80 IMAGE COLLECTION
KFD BiasMap KDDA
none | tracing | filter | none | tracing | filter | none | tracing | filter
GM | 82.7 82.7 82.7 | 58.0 59.2 714 | 76.8 77.2 82.2
SP 94.5 94.6 94.7 | 50.0 54.0 744 | 79.8 80.7 83.6

resented by 286-dimensional feature vector containing 166
global color histogram and 120 Gabor filter texture descrip-
tors. extracted by the Viper system [14]. Kernel parame-
ters were determined by cross-validation so as to maximize
performance of KFD, and fixed afterwards. The obtained
results for each method in terms of averaged GM accu-
racy and specificity in the “one-against-all” classification
scenario are given in Table II. The reported figures gen-
erally confirm the hypothesis that false positive projection
elimination strategies increase specificity leading to a bet-
ter GM accuracy. These findings also demonstrate that
even simple post-processing methods, such as line tracing,
may sometimes be sufficient to enhance classification per-
formance, while further benefits may be extracted from
more sophisticated techniques, such as the filter method of
an add-on high recall classifier.

V. CONCLUSION

We have presented the method of KDDA - a kernelized
extension of the distance-based discriminant analysis ap-
proach. The proposed technique has been shown to be
prone to a typical failure scenario referred to as the false
positive projection effect, also present in a number of other
nonlinear projective techniques. We have also suggested
and empirically evaluated strategies for avoiding the above
mentioned adverse effect on a number of synthetic data sets
and on the task of content-based image retrieval, achieving
encouraging results.
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