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Abstract. This paper presents a hierarchical ensemble learning
method applied in the context of multimedia autoannotation. In
contrast to the standard multiple-category classification setting
that assumes independent, non-overlapping and exhaustive set of
categories, the proposed approach models explicitly the hierarchi-
cal relationships among target classes and estimates their relevance
to a query as a trade-off between the goodness of fit to a given
category description and its inherent uncertainty. The promising
results of the empirical evaluation confirm the viability of the pro-
posed approach, validated in comparison to several techniques of
ensemble learning, as well as with different type of baseline classi-
fiers.

INTRODUCTION

One of the essential challenges in modern information retrieval is to be able
to deduce high-level semantics from the low-level perceptual features of mul-
timedia, which the literature sources refer to as the semantic categorization,
keyword prediction, autoannotation or automatic linguistic indexing task.
The diversity in the problem terminology reflects the variety of contribu-
tions from numerous research domains that have been proposed to date. For
example, an appealing idea of treating the visual feature data as another
language to translate semantic keywords to and from is developed with the
aid of generative probabilistic models by Barnard et al. [1, 2]. A family of
methods [16, 18, 22, 23], related to the cross-language extension of the latent
semantic indexing (LSI) technique [5, 11], permit the retrieval of multime-
dia semantics via low-level feature queries. Yet, the majority of the other
approaches consider the multimedia autoannotation problem in the multiple-
category classification framework, where unseen documents must be assigned
to one or more predefined semantic categories. In [7], for instance, the authors
focus on improving several popular ensemble schemes, such as OPC (one per



class), PWC (pair-wise coupling) and ECOC (error-correcting output codes).
The methods developed in [3, 12, 13] decompose a multiple-category classi-
fication task into a collection of binary clasification problems and propose
ways of recombining effectively the individual predictions from classifiers as
diverse as SVM, BPM, 2D-MHMM. The semantic categories for these and
many other classification-based techniques are generally assumed to be inde-
pendent, non-overlapping and sufficient to cover all of the problem domain.

The approach presented in this paper is also formulated as a classification-
based method, but differs from the above work in the important respect that
the relationships among the semantic categories derived from the individual
keywords of the annotation corpora are explicitly modeled in Bayesian terms,
leading to a more consistent autoannotation performance. Furthermore, the
proposed method broadens the range of the derived annotation allowing to
predict more general notions or semantically-related keyword groups in addi-
tion to individual keywords present in the training data vocabulary. Another
benefit of the proposed formulation is that it gives an answer to such an
important question as how many keywords the system should predict and
whether it is reasonable to predict anything at all.

The remainder of this paper is organized as follows. Section 2 presents
the problem formulation focused on the autoannotation of digital images as a
particular form of multimedia documents, followed by an illustrative example
of the proposed method, given in Section 3. The experimental results and
concluding remarks are provided in Sections 4 and 5.

PROBLEM FORMULATION

We employ a hierarchical ensemble of binary classifiers in order to perform
semantic annotation of unseen images. Given a training set of annotated
images X (7) = {I+, K }}—, where I; and K, represent the feature vector of
a given image and its associated set of keywords, respectively, the concept
hierarchy H = {C;}Y, is defined by all of the unique nouns comprising
the annotation vocabulary V = (J;'_; K¢ and their hyponyms derived from
WordNet [15]. Every concept C; occupies a separate node in H, and is
associated with a binary classifier ®; designed to distinguish the set of leaf
concepts subsumed (directly or indirectly) by C;, denoted as L(C;), from all
of the others. An example of a hierarchy derived for a simple vocabulary
V:{beach, flower, grass, mountain, rock, sky, tree} is shown in Figure 1.

In order to perform the autoannotation of an unseen image represented
by a low-level feature vector I, each concept C; is assessed as a potential
candidate. Thus, the set of possible annotations is no longer restricted to be
V', as is the case for the majority of other similar techniques. The relevance of
C; is seen as a trade-off between, on one hand, how well the input data Iy fits
the description of C; from the classification accuracy point of view, and, on
the other hand, how specific or non-ambiguous the candidate set of keywords
L(C;) is. In our method, the first of these two quantites is represented by



Figure 1: Classifier hierarchy example. Shaded nodes denote C; € V/

the posterior probability of a concept given the data, P(C;|Iy), while the
second one is estimated as the posterior probability of a concept given the
assumption that a particular keyword & from the set of all homonyms of C;
is chosen correctly, denoted as P(C;|k).

For a given concept C;, the estimate of P(C;|Iy) is determined according
to the following theorem, which is a reformulation of a previously established
result described in [10]:

Theorem 1, (Kumar et al., 2002). The posterior probability P(C;|Iy) for
any input Iy is the product of the posterior probabilities of all the internal
classifiers along a unique path from the root node to Cj, i.e.
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where P(C;) is the depth of C; (the depth of the root concept Cy is 0), Ci(l)
is the concept at depth on the path from the root node to C;, such that
02C)) = C; and o = Cy.

In order to ensure that (1) is applicable in the case of classifiers with non-
probabilistic outputs, such as SVM [4], a sigmoid function, e.g., m,
is fit to the raw classifier output values y;, as described in [17]. As for P(C;k),
the Bayes theorem allows to express this quantity in terms of statistics of the
training data as shown in (2):
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where P(C;), a prior probability of concept Cj, is estimated from the training
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and P(k|C;), the worst-case estimate of the probability of choosing a correct
annotation keyword k given the degree of generality of concept C;, is deduced
from the homonym set cardinality information derived from WordNet:

mincer,(c,) freqg™W) (@)

P(k|C;) = Tred ™) : (4)

In (3) and (4), the frequency of a given concept in the training data and
the cardinality of the WordNet homonym set are denoted as freq(™) and
freq™), respectively.

Finally, assuming that the likelihood of the input data Iy given Cj is not
dependent on the correctness of a particular choice of k£ from the homonym
set of C;, we obtain the following result:

P(Cilly, k) o< P(Cs| Iy ) P(Cilk) = p, (5)

which essentially represents a means of comparison of different hypothesis
concepts {C;} that takes into account both the goodness of fit of the data
Iy to a given concept description and the concept’s inherent degree of uncer-
tainty or specificity. The next section illustrates these notions.

ILLUSTRATIVE EXAMPLE

Let us come back to the simplified 12-concept classifier hierarchy given in
Figure 1. To be able to observe the effect of each of the two factors con-
tributing to the final estimate of the concept relevance, p, we plot separately
the computed values of P(C;|k), Figure 2(c), and P(C;|Iy), Figure 2(b), for
a sample test image query depicted in Figure 2(a). As the diagrams show,
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Figure 2: Individual contributions of factors P(C;|Iy) and P(C;|k)



there is a natural tendency among the values of P(C;|Iyy) to favor simpler,
more general concepts, such as object, due to the smaller number of terms to
be evaluated in product (1). Quite the opposite trend is noticeable among
the estimates of P(C;|k) that tend to promote very specific, unambiguous
concepts, such as sky, taking into account their prior probabilities as well.
This very trade-off of “Goodness of fit vs. Specificity” is captured by the con-
cept relevance, p, leading to the results listed in Table 1 that demonstrate a

TABLE 1: CANDIDATE CONCEPTS RANKED BY RELEVANCE

Rank | —log, p(C;) | Concept C;
1 5.41 Cg = tree
2 7.46 Cy = sky
3 8.44 C4 = vascular plant (flower, grass, tree)
4 9.84 Cy = grass
5 12.64 C7 = flower
6 17.26 C; = entity
7 17.87 C'3s = object
8 19.42 C5 = natural object
9 21.00 Cy = rock
10 44.32 C10 = geological formation
11 55.97 C12 = mountain
12 56.35 C11 = beach

reasonable degree of coherence between the top ranking concepts C; and the
true keywords of the query Ky = {flowers, path, grass, trees}.

Another important property of the proposed method that the figures from
Table 1 help highlight is its ability to determine exactly how many of the top-
ranked concepts should be predicted. Many existing approaches [1, 2, 16]
resolve this issue by specifying a tunable “refuse-to-predict” parameter that
regulates the propensity of image regions to emit concepts or, as some other
techniques, by simply considering a fixed number of top-ranked entries. In
our case, the relevance of the root node, p;1 = p(C), provides a natural
threshold that determines the number of candidate annotation concepts to
be selected. An intuitive interpretation of neg-logarithm of this quantity
comes from the minimum message length (MML) principle of information
theory [21], which interprets — log, p1 as the null-model hypothesis test that
corresponds to transmitting all the data, since the root concept subsumes all
of the other concepts, as is. According to the MML principle, any hypothesis
that cannot better the null-model is not acceptable. In our example, this
assertion makes us discard all of the candidate concepts ranked 6 or worse
(see Table 1).



EXPERIMENTAL RESULTS

In our experiments we have used data from two separate image collections
for training and testing in an attempt to ensure collection-independent learn-
ing. The training data was derived from the Washington University anno-
tated image collection [14] with about 600 images, while the testing data
constituted a 254 image subset, New Zealand and Ireland sections, from
Corel image database. The visual information for each training image was
represented by 286-dimensional feature vector containing 166 global color
histogram and 120 Gabor filter texture descriptors extracted by the Viper
system [19]. Annotation keywords appearing only once were eliminated from
the target vocaublary V', from which a hierarchical ensemble of 60 concepts
was constructed.

In order to be able to judge the performance of the presented method
in terms of the traditional precision and recall indicators, we have adopted
the following strategy. Whenever a non-leaf concept, C; ¢ V is predicted,
it is evaluated as a union of its underlying keywords, L(C;), thus bridging
the vocabulary gap between the derived concepts, e.g. [vessel, watercraft],
and the actual training data, e.g. boat, sailboat, ferryboat, rowboat, at the
expense of precision. Using the DDA baseline classifiers [8, 9] for each concept
C; € H, the following precision and recall results on the test set vocabulary
were obtained (see Figure 3). As seen from the figure, the naturally high recall
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Figure 3: Performance indicators on test data vocabulary

results boosted by keyword group retrieval, Figure 3(a) do not necessarily
correspond to high frequency common concepts emphasizing the importance
of the concept co-occurrence factors, while the significantly lower precision
values for complex concepts, such as church, fence, boat, Figure 3(b), indicate
that these words are much more often retrieved as a group of semantically-
related keywords, rather than individually.

An illustration of the automatically derived annotation is provided in
Figure 4, showing examples occurrences of out-of-vocabulary words being



replaced by a visually similar common concepts C; € V (top-right image,
castle — rock), members of the vocaulary being predicted as semantically
relevant, but more common (and therefore, more likely) concepts C; (top-
left, buildings — construction), as well as other typical predictions.

True annotation: True annotation:
sky, street, buildings, town sky, castle, water, tree
Autoannotation: Autoannotation:
sky, construction, sky, rock, tree

natural object, artefact

True annotation: True annotation:

cows, road, trees, grass sky, water, mountain, trees,
Autoannotation: Autoannotation:

bush, tree, grass, vascular sky, water, geological formation,
plant, woody plant, organism natural object, artefact

Figure 4: Autoannotation of test images

In addition to the above experiments, we have compared the presented
method to several popular classifier ensemble techniques, such as OPC, or
one-against-all strategy, and Max Wins algorithms [6] that combined SVM
baseline classifiers. As shown in Table 2, the proposed hierarchical semantic
ensemble (HSE) approach achieved better results despite the fact that only
a fixed number of top-ranked singleton concepts was allowed to be predicted,
which was done in order to ensure equal conditions for all of the methods,
most of which have no means of determining exactly the number of concepts
in the derived annotation. The first row of Table 2 represents the reference
point performance attained by sampling concepts according to their empirical
distribution in the training data annotation, i.e. picking word tree first, since
it is most likely to occur, then sky, and so on, whereas the last row shows



TABLE 2: CLASSIFIER ENSEMBLE PERFORMANCE RESTRICTED TO TOP 5 KEYWORDS

Ensemble Baseline classifier | % Recall | % Precision
Empirical none 16.13 5.04
Max Wins SVM, polynomial 8.14 3.83
Max Wins SVM, gaussian 10.61 4.47
opPC SVM, polynomial 20.31 785
OPC SVM, gaussian 21.27 10.19
HSE DDA 21.22 10.20
HSE+siblings | DDA 28.42 26.88

an improvement in performance of the presented HSE method when one
considers sibling concepts! the same, e.g. sailboat and boat.

We also examined the performance of various types of binary SVM tech-
niques as baseline classifiers in the proposed HSE framework, as illustrated
in Table 3. The results of these studies have confirmed earlier findings [20]

TABLE 3: INFLUENCE OF BASELINE CLASSIFIER ON HSE PERFORMANCE

Baseline classifier | % Recall | % Precision
SVM, linear 18.12 5.28
SVM, polynomial 18.34 5.67
SVM, gaussian 18.62 6.05
DDA 21.22 10.20

stating that state-of-the-art individual classifiers do not necessarily always
lead to a better performance in ensembles, while the inadequate results for
the Max Wins technique, the only scheme to be using raw classifier out-
puts, emphasize the importance of the role of fitted posterior probabilities in
classification ensembles.

CONCLUSION

We have presented a hierarchical ensemble learning method applied in the
context of multimedia autoannotation. In contrast to the standard multiple-
category classification setting that assumes independent, non-overlapping and
exhaustive set of categories, the proposed approach models explicitly the hi-
erarchical relationships among target classes using WordNet, and estimates
their relevance to a query as a trade-off between the goodness of fit to a given
category description and its inherent uncertainty. The latter aspect, formu-
lated in Bayesian terms, brings an additional benefit of allowing to determine
exactly the number of categories to be predicted. The promising results of
the empirical evaluation confirm the viability of the proposed approach, val-
idated in comparison to several techniques of ensemble learning, as well as
with different type of baseline classifiers.

1Concept A is a sibling of concept B if A(Z(A)-1) = B(Z(B)-1),



In perspective, we plan to explore the problem of establishing correspon-
dence between individual annotation keywords and low-level feature descrip-
tors, and improve the proposed approach my taking advantage of the mean-
ingful structure of the resulting hierarchical classification ensemble in order
to incorporate relevance feedback from the user.
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