
Iterative Majorization Approah to theDistane-based Disriminant AnalysisSerhiy Kosinov1, St�ephane Marhand-Maillet1, and Thierry Pun1Computer Vision and Multimedia Lab, University of Geneva,24 Rue du General-Dufour, CH-1211, Geneva 4, Switzerland,Abstrat. This paper proposes a method of �nding a disriminative linear trans-formation that enhanes the data's degree of onformane to the ompatness hy-pothesis and its inverse. The problem formulation relies on inter-observation dis-tanes only, whih is shown to improve non-parametri and non-linear lassi�er per-fromane on benhmark and real-world data sets. The proposed approah is suitablefor both binary and multiple-ategory lassi�ation problems, and an be appliedas a dimensionality redution tehnique. In the latter ase, the number of neessarydisriminative dimensions an be determined exatly. The sought transformation isfound as a solution to an optimization problem using iterative majorization.1 IntrodutionEÆient algorithms, developed originally in the �eld of multidimensional sal-ing (MDS), quikly gained popularity and paved their way into disriminantanalysis. Koontz and Fukunaga (1972), as well as Cox and Ferry (1993) pro-posed to inlude lass membership information in the MDS proedure andreover a disriminative transformation by �tting a posteriori a linear orquadrati model to the obtained redued-dimensionality on�guration. Thewide-spread use of guaranteed-onvergene optimization tehniques in MDSsparked the development of more advaned disriminant analysis methods,suh as one put forward by Webb (1995), that integrated the two stages ofsaling and model �tting, and determined the sought transformation as apart of the MDS optimization. These methods, however, foused mostly onderiving the transformation without adapting it to the spei� propertiesof the lassi�er that is subsequently applied to the observations in the thetransformed spae. In addition to that, these tehniques do not expliitly an-swer the question of how many dimensions are needed to distinguish amonga given set of lasses.In order to address these issues, we propose a method that relies on aneÆient optimization tehnique developed in the �eld of MDS and fouses on�nding a disriminative transformation based on the ompatness hypothesis(see Arkadev and Braverman (1966)). The proposed method di�ers from theabove work in that it spei�ally aims at improving the auray of the non-parametri type of lassi�ers, suh as nearest neighbor (NN), Fix and Hodges(1951), and an determine exatly the number of neessary disriminative



2 Kosinov et al.dimensions, sine feature seletion is embedded in the proess of deriving thesought transformation.The remainder of this paper is strutured as follows. In Setion 2, weformulate the task of deriving a disriminant transformation as a problem ofminimizing a riterion based on the ompatness hypothesis. Then, in Setion3, we demonstrate how the method of iterative majorization (IM) an be usedto �nd a solution that optimizes the hosen riterion. Setion 4 desribesthe extensions of the proposed approah for dimensionality redution andmultiple lass disriminant analysis, whereas the details of our experimentsare provided in Setion 5.2 Problem formulationSuppose that we seek to distinguish between two lasses represented by ma-tries X and Y having NX and NY rows of m-dimensional observations,respetively. For this purpose, we are looking for a transformation matrixT 2 Rm�k , k � m, suh that fT : X 7! X 0; Y 7! Y 0g, that eventuates inompatness within members of one lass, and separation within members ofdi�erent lasses.While the above preamble may �t just about any lass-separating trans-formation method pro�le (e.g., Duda and Hart (1973)), we must emphasizeseveral important assertions that distinguish the presented method and nat-urally lead to the problem formulation that follows. First of all, we must re-iterate that our primary goal is to improve the NN performane on the taskof disriminant analysis. Therefore, the sought problem formulation must re-late only to the fators that diretly inuene the deisions made by the NNlassi�er, namely - the distanes among observations. Seondly, in order tobene�t as muh as possible from the non-parametri nature of the NN, thesought formulation must not rely on the traditional lass separability andsatter measures that use lass means, weighted entroids or their variantswhih, in general, onnote quite strong distributional assumptions. Finally,an asymmetri produt form should be more preferable, justi�ed as onsistentwith the properties of the data enountered in the target appliation area ofmultimedia retrieval and ategorization, Zhou and Huang (2001). More for-mally, these requirements an be aommodated by an optimization riterionexpressed in terms of distanes among the observations from the two datasetsas follows: J(T ) = 0�NXYi<j 	 �dWij (T )�1A 2NX (NX�1)0�NXYi=1 NYYj=1 dBij(T )1A 1NXNY ; (1)



Distane-based Disriminant Analysis 3where the numerator and denominator of (1) represent the geometri means ofthe within- and between-lass distanes de�ned asp(xi � xj)TT T (xi � xj)Tandp(xi � yj)TT T (xi � yj)T , respetively, and 	(�) denotes a Huber robustestimation funtion, Huber (1964), parametrized by a positive onstant .The hoie of Huber funtion in (1) is motivated by the fat that at  thefuntion swithes from quadrati to linear penalty allowing to mitigate theonsequenes of an impliit unimodality assumption that the formulation ofthe numerator of (1) may lead to. In the logarithmi form, riterion (1) iswritten as:log J(T ) = 2NX(NX � 1) NXXi<j log	 �dWij (T )�� 1NXNY NXXi=1 NYXj=1 log dBij(T ) (2)= �SW (T )� �SB(T ):Our preliminary studies, Kosinov (2003), have shown that neither straight-forward gradient desent nor some of the state-of-the-art optimization rou-tines are suitable for solving the above optimization problem mostly due tosuseptibility to loal minima, adverse dependene on the initial value, anddiÆulties related to the disontinuities of the derivative of (2). However, byderiving some approximations of SW (T ) and SB(T ) one an make the task ofminimizing log J(T ) riterion amenable to a simple iterative proedure basedon the majorization method (Borg and Groenen (1997), de Leeuw (1977),Heiser (1995)), whih we disuss in the following setion.3 Iterative majorizationIt an be veri�ed that majorization remains valid under additive deom-position. Therefore, a possible strategy for majorizing (2) is to deal withSW (T ) and �SB(T ) separately and subsequently reombine their respetivemajorizing expressions. We begin by noting that both the logarithm and Hu-ber funtion are majorizable by linear and quadrati funtions, respetively,Heiser (1995). This fat makes it possible to derive a majorizing funtion ofSW (T ) as follows:SW (T ) = NXXi<j log	 �dWij (T )� � NXXi<j �wij � �dWij (T )�22	 �dWij ( �T )� +K1 = �SW (T; �T ); (3)where T; �T 2 Rm�m , �T is a supporting point for T , �wij is a weight of theHuber funtion majorizer, that in this ase is equal to 1 if 	(dWij ( �T )) < or =	(dWij ( �T )) otherwise, and K1 is a onstant term with respet to T .Swithing to matrix notation and de�ning a square symmetri design matrixB dependent on �T (see Kosinov (2003) for derivation details) let us rewritethe majorizing expression of SW (T ) in its �nal form:�SW (T; �T ) = 12tr �T TXTBXT �+K1: (4)



4 Kosinov et al.An attempt to majorize �SB(T ) diretly runs into problems due to thediÆulties of �nding a proper quadrati majorizing funtion of the negativelogarithm. As a pratial solution, we replae the neg-logarithm with itspiee-wise linear approximation (see Figure 1, left panel), whih, in turn, an
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Distane-based Disriminant Analysis 5While at every iteration it is possible to minimize (7) by solving a systemof linear equations, it is often reommended, Krogh and Hertz (1992), thata length-onstrained solution be found, espeially in the ase of lassi�ersapable of ahieving zero training error, to prevent over�tting. By inorpo-rating the onstraint into the Lagrangian, we obtain a standard trust-regionsubproblem, for whih eÆient solution methods exist, Rojas et al. (2000),Hager (2001).4 Dimensionality redution and multiple-lass settingFor any T 2 Rm�k , k < m, the proposed method has an additional advan-tage of being a dimensionality redution tehnique. Moreover, the value ofk, i.e., the exat number of dimensions the data an be redued to with-out loss of disriminatory power with respet to (2), is preisely determinedby the number of non-zero singular values of T . Indeed, the distanes be-tween the transformed observations may be viewed as distanes between theoriginal observations in a di�erent metri TT T , that an be expressed asTT T = USV TV SUT = UkS2kUTk using the singular value deomposition ofT . The obtained expression reveals that the e�et of the full-dimensionaltransformation T is aptured by the �rst k left-singular vetors of T saledby the orresponding non-zero singular values, whose number gives an answerto the question of how many dimensions are needed in the transformed spae.While the above disussion is onentrated mostly on the two-lass on-�guration, it is straightforward to generalize the presented formulation to amultiple-lass disriminant analysis setting, for the number of lasses K � 2:log JK(T ) = K�1Xi=1 ��(i)SW (T )(i) � �(i)SB(T )(i)� : (8)5 Experimental resultsOur empirial analysis was based on data sets from the UCI Mahine Learn-ing Repository, Blake and Merz (1998). First of all, we veri�ed that thesolutions of the optimization problem formulated in Setion 2 found by theproposed method were of better quality ompared to those of generi teh-niques, on�rming the results reported by Van Deun and Groenen (2003),and Webb (1995). Indeed, numerous random initializations of the gradientsearh led to inferior as well as unstable results reeted in higher values oflog J (see Figure 2), while the IM-based method proved nearly insensitiveto the hoie of the initial supporting point and regularly reahed far lowerriterion values maintaining onvergene property at all times, as illustratedin Figure 3. We also validated the proposed dimensionality redution teh-nique by analysing how the lassi�ation performane varied with respet to
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Fig. 4. Dimensionality redution experiments: lassi�ation performane results(left) and singular values of T 2 Rm�m (right). The dashed lines mark the boundarythat determines the dimensionality of the transformed spae.k, the dimensionality of the transformed spae, and how it was related to thenumber of non-zero singular values of the full-dimensional transformation, anexample of whih for the Sonar data set is depited in Figure 4. The rightpane plots 10 largest out of 60 singular values of the full-dimensional trans-



Distane-based Disriminant Analysis 7formation, in desending order, while the left diagram1 shows the results of10-fold ross-validation experiments with respet to the transformed spaedimensionality. It is easy to see that the singular values beyond the 7th arevirtually zero. And as the diagram on the left on�rms, adding dimensionsbeyond 7 no longer improves the lassi�ation performane (on�rmed byChow test at 99% on�dene).The experiments with the rest of the UCI data sets ompared 10-foldross-validation lassi�ation performane of the nearest neighbor lassi�erin the original feature spae (denoted as NN) and that ahieved in the trans-formed spae derived by the proposed distane-based disriminant analysismethod (denoted heneforth as DDA+NN). Therefore, the goal of this analy-sis was to assess the e�et of applying a DDA transformation on the aurayof the NN lassi�er. The error rates of NN and DDA+NN data lassi�ationexperiments are presented in Table 1, showing a onsistent improvement inTable 1. Classi�ation results for UCI data setsData set Classes % Error of NN % Error of DDA+NNHepatitis 2 29.57 0.00Ionosphere 2 13.56 7.14Diabetes 2 30.39 27.11Heart 2 40.74 21.11Monk's P1 2 14.58 0.69Balane 3 21.45 3.06Iris 3 4.00 3.33DNA 3 23.86 6.07Vehile 4 35.58 24.70performane. A separate set of experiments (see Kosinov (2003) for details)using the ETH80 database also revealed the importane of the length on-straint, introdued in Setion 3 to avoid over�tting. Both unonstrained andlength-onstrained solutions found by the DDA proedure lead to zero er-ror rate on the training data, but turned out to perform quite di�erentlyon the test data sets, on whih the length-onstrained version of the pro-posed method demonstrated up to 20% better lassi�ation auray. Ad-ditionally, the results of our more reent experiments reveal that the DDAombined with an SVM lassi�er, Cristianini and Shawe-Taylor (2000), pro-dues a smaller number of support vetors in the solutions found via thetransformed spae, whih leads to better lassi�ation auray.1 Dot-�lled bars denote performane ahieved by �xing k a priori, while shadedbars show results obtained from a k-trunated SVD of the full-dimensional trans-formation.
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