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t. This paper proposes a method of �nding a dis
riminative linear trans-formation that enhan
es the data's degree of 
onforman
e to the 
ompa
tness hy-pothesis and its inverse. The problem formulation relies on inter-observation dis-tan
es only, whi
h is shown to improve non-parametri
 and non-linear 
lassi�er per-froman
e on ben
hmark and real-world data sets. The proposed approa
h is suitablefor both binary and multiple-
ategory 
lassi�
ation problems, and 
an be appliedas a dimensionality redu
tion te
hnique. In the latter 
ase, the number of ne
essarydis
riminative dimensions 
an be determined exa
tly. The sought transformation isfound as a solution to an optimization problem using iterative majorization.1 Introdu
tionEÆ
ient algorithms, developed originally in the �eld of multidimensional s
al-ing (MDS), qui
kly gained popularity and paved their way into dis
riminantanalysis. Koontz and Fukunaga (1972), as well as Cox and Ferry (1993) pro-posed to in
lude 
lass membership information in the MDS pro
edure andre
over a dis
riminative transformation by �tting a posteriori a linear orquadrati
 model to the obtained redu
ed-dimensionality 
on�guration. Thewide-spread use of guaranteed-
onvergen
e optimization te
hniques in MDSsparked the development of more advan
ed dis
riminant analysis methods,su
h as one put forward by Webb (1995), that integrated the two stages ofs
aling and model �tting, and determined the sought transformation as apart of the MDS optimization. These methods, however, fo
used mostly onderiving the transformation without adapting it to the spe
i�
 propertiesof the 
lassi�er that is subsequently applied to the observations in the thetransformed spa
e. In addition to that, these te
hniques do not expli
itly an-swer the question of how many dimensions are needed to distinguish amonga given set of 
lasses.In order to address these issues, we propose a method that relies on aneÆ
ient optimization te
hnique developed in the �eld of MDS and fo
uses on�nding a dis
riminative transformation based on the 
ompa
tness hypothesis(see Arkadev and Braverman (1966)). The proposed method di�ers from theabove work in that it spe
i�
ally aims at improving the a

ura
y of the non-parametri
 type of 
lassi�ers, su
h as nearest neighbor (NN), Fix and Hodges(1951), and 
an determine exa
tly the number of ne
essary dis
riminative



2 Kosinov et al.dimensions, sin
e feature sele
tion is embedded in the pro
ess of deriving thesought transformation.The remainder of this paper is stru
tured as follows. In Se
tion 2, weformulate the task of deriving a dis
riminant transformation as a problem ofminimizing a 
riterion based on the 
ompa
tness hypothesis. Then, in Se
tion3, we demonstrate how the method of iterative majorization (IM) 
an be usedto �nd a solution that optimizes the 
hosen 
riterion. Se
tion 4 des
ribesthe extensions of the proposed approa
h for dimensionality redu
tion andmultiple 
lass dis
riminant analysis, whereas the details of our experimentsare provided in Se
tion 5.2 Problem formulationSuppose that we seek to distinguish between two 
lasses represented by ma-tri
es X and Y having NX and NY rows of m-dimensional observations,respe
tively. For this purpose, we are looking for a transformation matrixT 2 Rm�k , k � m, su
h that fT : X 7! X 0; Y 7! Y 0g, that eventuates in
ompa
tness within members of one 
lass, and separation within members ofdi�erent 
lasses.While the above preamble may �t just about any 
lass-separating trans-formation method pro�le (e.g., Duda and Hart (1973)), we must emphasizeseveral important assertions that distinguish the presented method and nat-urally lead to the problem formulation that follows. First of all, we must re-iterate that our primary goal is to improve the NN performan
e on the taskof dis
riminant analysis. Therefore, the sought problem formulation must re-late only to the fa
tors that dire
tly in
uen
e the de
isions made by the NN
lassi�er, namely - the distan
es among observations. Se
ondly, in order tobene�t as mu
h as possible from the non-parametri
 nature of the NN, thesought formulation must not rely on the traditional 
lass separability ands
atter measures that use 
lass means, weighted 
entroids or their variantswhi
h, in general, 
onnote quite strong distributional assumptions. Finally,an asymmetri
 produ
t form should be more preferable, justi�ed as 
onsistentwith the properties of the data en
ountered in the target appli
ation area ofmultimedia retrieval and 
ategorization, Zhou and Huang (2001). More for-mally, these requirements 
an be a

ommodated by an optimization 
riterionexpressed in terms of distan
es among the observations from the two datasetsas follows: J(T ) = 0�NXYi<j 	 �dWij (T )�1A 2NX (NX�1)0�NXYi=1 NYYj=1 dBij(T )1A 1NXNY ; (1)



Distan
e-based Dis
riminant Analysis 3where the numerator and denominator of (1) represent the geometri
 means ofthe within- and between-
lass distan
es de�ned asp(xi � xj)TT T (xi � xj)Tandp(xi � yj)TT T (xi � yj)T , respe
tively, and 	(�) denotes a Huber robustestimation fun
tion, Huber (1964), parametrized by a positive 
onstant 
.The 
hoi
e of Huber fun
tion in (1) is motivated by the fa
t that at 
 thefun
tion swit
hes from quadrati
 to linear penalty allowing to mitigate the
onsequen
es of an impli
it unimodality assumption that the formulation ofthe numerator of (1) may lead to. In the logarithmi
 form, 
riterion (1) iswritten as:log J(T ) = 2NX(NX � 1) NXXi<j log	 �dWij (T )�� 1NXNY NXXi=1 NYXj=1 log dBij(T ) (2)= �SW (T )� �SB(T ):Our preliminary studies, Kosinov (2003), have shown that neither straight-forward gradient des
ent nor some of the state-of-the-art optimization rou-tines are suitable for solving the above optimization problem mostly due tosus
eptibility to lo
al minima, adverse dependen
e on the initial value, anddiÆ
ulties related to the dis
ontinuities of the derivative of (2). However, byderiving some approximations of SW (T ) and SB(T ) one 
an make the task ofminimizing log J(T ) 
riterion amenable to a simple iterative pro
edure basedon the majorization method (Borg and Groenen (1997), de Leeuw (1977),Heiser (1995)), whi
h we dis
uss in the following se
tion.3 Iterative majorizationIt 
an be veri�ed that majorization remains valid under additive de
om-position. Therefore, a possible strategy for majorizing (2) is to deal withSW (T ) and �SB(T ) separately and subsequently re
ombine their respe
tivemajorizing expressions. We begin by noting that both the logarithm and Hu-ber fun
tion are majorizable by linear and quadrati
 fun
tions, respe
tively,Heiser (1995). This fa
t makes it possible to derive a majorizing fun
tion ofSW (T ) as follows:SW (T ) = NXXi<j log	 �dWij (T )� � NXXi<j �wij � �dWij (T )�22	 �dWij ( �T )� +K1 = �SW (T; �T ); (3)where T; �T 2 Rm�m , �T is a supporting point for T , �wij is a weight of theHuber fun
tion majorizer, that in this 
ase is equal to 1 if 	(dWij ( �T )) < 
or 
=	(dWij ( �T )) otherwise, and K1 is a 
onstant term with respe
t to T .Swit
hing to matrix notation and de�ning a square symmetri
 design matrixB dependent on �T (see Kosinov (2003) for derivation details) let us rewritethe majorizing expression of SW (T ) in its �nal form:�SW (T; �T ) = 12tr �T TXTBXT �+K1: (4)



4 Kosinov et al.An attempt to majorize �SB(T ) dire
tly runs into problems due to thediÆ
ulties of �nding a proper quadrati
 majorizing fun
tion of the negativelogarithm. As a pra
ti
al solution, we repla
e the neg-logarithm with itspie
e-wise linear approximation (see Figure 1, left panel), whi
h, in turn, 
an
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ewise-linear approximation of �log(x)be represented as a sum of the fun
tions de�ned as:g(x;x0; l; r) = � r(x � x0) if x � x0;�l(x� x0) if x < x0; (5)where l + r > 0, to ensure 
onvexity. It is easy to see that the family offun
tions de�ned in (5) is one of the many possible generalizations of theabsolute value fun
tion jxj, the former being equivalent to the latter wheneverx0 = 0 and l = r = 1. Similarly to jxj, g(x;x0; l; r) 
an be majorized by aquadrati
 ax2 + bx + 
 with 
oeÆ
ients a > 0, b and 
 determined from themajorization requirements (see an example in Figure 1, right panel). Finally,�SB(T ) expressed in terms of the above quadrati
s 
an be majorized by thefollowing fun
tion, written in matrix notation as:��SB (T; �T ) = tr(T TZTGZT )� tr(T TZTCZ �T ) +K2; (6)where Z is the matrix obtained by joining X and Y together, row-wise, andG, C are design matri
es dependent on �T , see Kosinov (2003) for derivationdetails and a des
ription of an alternative faster method based on Taylorseries expansion.Finally, 
ombining results (4) and (6), we obtain a majorizing fun
tion ofthe log J(T ) optimization 
riterion:�log J(T; �T ) = ��SW + ���SB= �2 tr �T TXTBXT �+ �tr(T TZTGZT )��tr(T TZTCZ �T ) +K3; (7)that is used to �nd an optimal transformation T minimizing log J(T ) 
riterionvia the iterative pro
edure des
ribed in Heiser (1995), and, thus, 
onstitutesthe 
ore of the proposed distan
e-based dis
riminant analysis (DDA) method.



Distan
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riminant Analysis 5While at every iteration it is possible to minimize (7) by solving a systemof linear equations, it is often re
ommended, Krogh and Hertz (1992), thata length-
onstrained solution be found, espe
ially in the 
ase of 
lassi�ers
apable of a
hieving zero training error, to prevent over�tting. By in
orpo-rating the 
onstraint into the Lagrangian, we obtain a standard trust-regionsubproblem, for whi
h eÆ
ient solution methods exist, Rojas et al. (2000),Hager (2001).4 Dimensionality redu
tion and multiple-
lass settingFor any T 2 Rm�k , k < m, the proposed method has an additional advan-tage of being a dimensionality redu
tion te
hnique. Moreover, the value ofk, i.e., the exa
t number of dimensions the data 
an be redu
ed to with-out loss of dis
riminatory power with respe
t to (2), is pre
isely determinedby the number of non-zero singular values of T . Indeed, the distan
es be-tween the transformed observations may be viewed as distan
es between theoriginal observations in a di�erent metri
 TT T , that 
an be expressed asTT T = USV TV SUT = UkS2kUTk using the singular value de
omposition ofT . The obtained expression reveals that the e�e
t of the full-dimensionaltransformation T is 
aptured by the �rst k left-singular ve
tors of T s
aledby the 
orresponding non-zero singular values, whose number gives an answerto the question of how many dimensions are needed in the transformed spa
e.While the above dis
ussion is 
on
entrated mostly on the two-
lass 
on-�guration, it is straightforward to generalize the presented formulation to amultiple-
lass dis
riminant analysis setting, for the number of 
lasses K � 2:log JK(T ) = K�1Xi=1 ��(i)SW (T )(i) � �(i)SB(T )(i)� : (8)5 Experimental resultsOur empiri
al analysis was based on data sets from the UCI Ma
hine Learn-ing Repository, Blake and Merz (1998). First of all, we veri�ed that thesolutions of the optimization problem formulated in Se
tion 2 found by theproposed method were of better quality 
ompared to those of generi
 te
h-niques, 
on�rming the results reported by Van Deun and Groenen (2003),and Webb (1995). Indeed, numerous random initializations of the gradientsear
h led to inferior as well as unstable results re
e
ted in higher values oflog J (see Figure 2), while the IM-based method proved nearly insensitiveto the 
hoi
e of the initial supporting point and regularly rea
hed far lower
riterion values maintaining 
onvergen
e property at all times, as illustratedin Figure 3. We also validated the proposed dimensionality redu
tion te
h-nique by analysing how the 
lassi�
ation performan
e varied with respe
t to
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riminative proje
tions of the Sonar data set: inferiorsolutions found by the gradient des
ent method
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Fig. 4. Dimensionality redu
tion experiments: 
lassi�
ation performan
e results(left) and singular values of T 2 Rm�m (right). The dashed lines mark the boundarythat determines the dimensionality of the transformed spa
e.k, the dimensionality of the transformed spa
e, and how it was related to thenumber of non-zero singular values of the full-dimensional transformation, anexample of whi
h for the Sonar data set is depi
ted in Figure 4. The rightpane plots 10 largest out of 60 singular values of the full-dimensional trans-
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riminant Analysis 7formation, in des
ending order, while the left diagram1 shows the results of10-fold 
ross-validation experiments with respe
t to the transformed spa
edimensionality. It is easy to see that the singular values beyond the 7th arevirtually zero. And as the diagram on the left 
on�rms, adding dimensionsbeyond 7 no longer improves the 
lassi�
ation performan
e (
on�rmed byChow test at 99% 
on�den
e).The experiments with the rest of the UCI data sets 
ompared 10-fold
ross-validation 
lassi�
ation performan
e of the nearest neighbor 
lassi�erin the original feature spa
e (denoted as NN) and that a
hieved in the trans-formed spa
e derived by the proposed distan
e-based dis
riminant analysismethod (denoted hen
eforth as DDA+NN). Therefore, the goal of this analy-sis was to assess the e�e
t of applying a DDA transformation on the a

ura
yof the NN 
lassi�er. The error rates of NN and DDA+NN data 
lassi�
ationexperiments are presented in Table 1, showing a 
onsistent improvement inTable 1. Classi�
ation results for UCI data setsData set Classes % Error of NN % Error of DDA+NNHepatitis 2 29.57 0.00Ionosphere 2 13.56 7.14Diabetes 2 30.39 27.11Heart 2 40.74 21.11Monk's P1 2 14.58 0.69Balan
e 3 21.45 3.06Iris 3 4.00 3.33DNA 3 23.86 6.07Vehi
le 4 35.58 24.70performan
e. A separate set of experiments (see Kosinov (2003) for details)using the ETH80 database also revealed the importan
e of the length 
on-straint, introdu
ed in Se
tion 3 to avoid over�tting. Both un
onstrained andlength-
onstrained solutions found by the DDA pro
edure lead to zero er-ror rate on the training data, but turned out to perform quite di�erentlyon the test data sets, on whi
h the length-
onstrained version of the pro-posed method demonstrated up to 20% better 
lassi�
ation a

ura
y. Ad-ditionally, the results of our more re
ent experiments reveal that the DDA
ombined with an SVM 
lassi�er, Cristianini and Shawe-Taylor (2000), pro-du
es a smaller number of support ve
tors in the solutions found via thetransformed spa
e, whi
h leads to better 
lassi�
ation a

ura
y.1 Dot-�lled bars denote performan
e a
hieved by �xing k a priori, while shadedbars show results obtained from a k-trun
ated SVD of the full-dimensional trans-formation.
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