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Abstract. This paper proposes a method of finding a discriminative linear trans-
formation that enhances the data’s degree of conformance to the compactness hy-
pothesis and its inverse. The problem formulation relies on inter-observation dis-
tances only, which is shown to improve non-parametric and non-linear classifier per-
fromance on benchmark and real-world data sets. The proposed approach is suitable
for both binary and multiple-category classification problems, and can be applied
as a dimensionality reduction technique. In the latter case, the number of necessary
discriminative dimensions can be determined exactly. The sought transformation is
found as a solution to an optimization problem using iterative majorization.

1 Introduction

Efficient algorithms, developed originally in the field of multidimensional scal-
ing (MDS), quickly gained popularity and paved their way into discriminant
analysis. Koontz and Fukunaga (1972), as well as Cox and Ferry (1993) pro-
posed to include class membership information in the MDS procedure and
recover a discriminative transformation by fitting a posteriori a linear or
quadratic model to the obtained reduced-dimensionality configuration. The
wide-spread use of guaranteed-convergence optimization techniques in MDS
sparked the development of more advanced discriminant analysis methods,
such as one put forward by Webb (1995), that integrated the two stages of
scaling and model fitting, and determined the sought transformation as a
part of the MDS optimization. These methods, however, focused mostly on
deriving the transformation without adapting it to the specific properties
of the classifier that is subsequently applied to the observations in the the
transformed space. In addition to that, these techniques do not explicitly an-
swer the question of how many dimensions are needed to distinguish among
a given set of classes.

In order to address these issues, we propose a method that relies on an
efficient optimization technique developed in the field of MDS and focuses on
finding a discriminative transformation based on the compactness hypothesis
(see Arkadev and Braverman (1966)). The proposed method differs from the
above work in that it specifically aims at improving the accuracy of the non-
parametric type of classifiers, such as nearest neighbor (NN), Fix and Hodges
(1951), and can determine exactly the number of necessary discriminative
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dimensions, since feature selection is embedded in the process of deriving the
sought transformation.

The remainder of this paper is structured as follows. In Section 2, we
formulate the task of deriving a discriminant transformation as a problem of
minimizing a criterion based on the compactness hypothesis. Then, in Section
3, we demonstrate how the method of iterative majorization (IM) can be used
to find a solution that optimizes the chosen criterion. Section 4 describes
the extensions of the proposed approach for dimensionality reduction and
multiple class discriminant analysis, whereas the details of our experiments
are provided in Section 5.

2 Problem formulation

Suppose that we seek to distinguish between two classes represented by ma-
trices X and Y having Ny and Ny rows of m-dimensional observations,
respectively. For this purpose, we are looking for a transformation matrix
T € R™*k k < m, such that {T : X + X' )Y + Y'}, that eventuates in
compactness within members of one class, and separation within members of
different classes.

While the above preamble may fit just about any class-separating trans-
formation method profile (e.g., Duda and Hart (1973)), we must emphasize
several important assertions that distinguish the presented method and nat-
urally lead to the problem formulation that follows. First of all, we must re-
iterate that our primary goal is to improve the NN performance on the task
of discriminant analysis. Therefore, the sought problem formulation must re-
late only to the factors that directly influence the decisions made by the NN
classifier, namely - the distances among observations. Secondly, in order to
benefit as much as possible from the non-parametric nature of the NN, the
sought formulation must not rely on the traditional class separability and
scatter measures that use class means, weighted centroids or their variants
which, in general, connote quite strong distributional assumptions. Finally,
an asymmetric product form should be more preferable, justified as consistent
with the properties of the data encountered in the target application area of
multimedia retrieval and categorization, Zhou and Huang (2001). More for-
mally, these requirements can be accommodated by an optimization criterion
expressed in terms of distances among the observations from the two datasets
as follows:
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where the numerator and denominator of (1) represent the geometric means of
the within- and between-class distances defined as v/(z; — ;) TTT (z; — x;)T
and \/(z; — y;)TTT (z; — y;)7, respectively, and ¥(-) denotes a Huber robust
estimation function, Huber (1964), parametrized by a positive constant c.
The choice of Huber function in (1) is motivated by the fact that at ¢ the
function switches from quadratic to linear penalty allowing to mitigate the
consequences of an implicit unimodality assumption that the formulation of
the numerator of (1) may lead to. In the logarithmic form, criterion (1) is
written as:

Nx Ny
log J(T log ¥ ( log d?
og J(T) = X_lgog NXNY;;Q%

= aSW(T) - ﬂSB( )

Our preliminary studies, Kosinov (2003), have shown that neither straight-
forward gradient descent nor some of the state-of-the-art optimization rou-
tines are suitable for solving the above optimization problem mostly due to
susceptibility to local minima, adverse dependence on the initial value, and
difficulties related to the discontinuities of the derivative of (2). However, by
deriving some approximations of Sy (T') and Sg(T) one can make the task of
minimizing log J(T') criterion amenable to a simple iterative procedure based
on the majorization method (Borg and Groenen (1997), de Leeuw (1977),
Heiser (1995)), which we discuss in the following section.

3 Iterative majorization

It can be verified that majorization remains valid under additive decom-
position. Therefore, a possible strategy for majorizing (2) is to deal with
Sw(T) and —Sp(T) separately and subsequently recombine their respective
majorizing expressions. We begin by noting that both the logarithm and Hu-
ber function are majorizable by linear and quadratic functions, respectively,
Heiser (1995). This fact makes it possible to derive a majorizing function of
Sw(T) as follows:

X Nx = w 2
= Zlogip (df;/(T)) < Z w + K1 = psy (T,71),(3)
— —~ 20 (d}Y(T))
1< 1<)

where T, T € R™*™ T is a supporting point for T, w;; is a weight of the
Huber function majorizer, that in this case is equal to 1 if ¥(d}} (T)) < ¢
or ¢/(d}¥(T)) otherwise, and K; is a constant term with respect to 7.
Switching to matrix notation and defining a square symmetric design matrix
B dependent on T (see Kosinov (2003) for derivation details) let us rewrite
the majorizing expression of Sy (T") in its final form:

1
sy (T, T) = Str (TTXTBXT) + K. (4)
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An attempt to majorize —Sg(T) directly runs into problems due to the
difficulties of finding a proper quadratic majorizing function of the negative
logarithm. As a practical solution, we replace the neg-logarithm with its
piece-wise linear approximation (see Figure 1, left panel), which, in turn, can

3 --- —log(x) 14
= piece—wise linear approximation

—— quadratic majorizer
= g(x;0,3,1)
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Fig. 1. Majorization of piecewise-linear approximation of —log(z)

be represented as a sum of the functions defined as:

r(z —x9) if x>z,
—l(z —mo) fz<x;

slasoo.tor) = { Q
where [ + r > 0, to ensure convexity. It is easy to see that the family of
functions defined in (5) is one of the many possible generalizations of the
absolute value function |z|, the former being equivalent to the latter whenever
zo = 0 and [ = r = 1. Similarly to |z|, g(z;zo,l,r) can be majorized by a
quadratic ax? 4+ bz + ¢ with coefficients a > 0, b and ¢ determined from the
majorization requirements (see an example in Figure 1, right panel). Finally,
—Sg(T) expressed in terms of the above quadratics can be majorized by the
following function, written in matrix notation as:

ps,(T,T) =te(TTZ"GZT) —te(TTZTCZT) + K, (6)

where Z is the matrix obtained by joining X and Y together, row-wise, and
G, C are design matrices dependent on T, see Kosinov (2003) for derivation
details and a description of an alternative faster method based on Taylor
series expansion.

Finally, combining results (4) and (6), we obtain a majorizing function of
the log J(T') optimization criterion:

MIOgJ(Ta T) = aUs, + 6/"’*53
= Str (TTXTBXT) + pte(T7 27 GZT)
—6te(TTZTCZT) + K, (7)

that is used to find an optimal transformation T minimizing log J(T') criterion
via the iterative procedure described in Heiser (1995), and, thus, constitutes
the core of the proposed distance-based discriminant analysis (DDA) method.
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While at every iteration it is possible to minimize (7) by solving a system
of linear equations, it is often recommended, Krogh and Hertz (1992), that
a length-constrained solution be found, especially in the case of classifiers
capable of achieving zero training error, to prevent overfitting. By incorpo-
rating the constraint into the Lagrangian, we obtain a standard trust-region
subproblem, for which efficient solution methods exist, Rojas et al. (2000),
Hager (2001).

4 Dimensionality reduction and multiple-class setting

For any T € R™** k < m, the proposed method has an additional advan-
tage of being a dimensionality reduction technique. Moreover, the value of
k, i.e., the exact number of dimensions the data can be reduced to with-
out loss of discriminatory power with respect to (2), is precisely determined
by the number of non-zero singular values of T'. Indeed, the distances be-
tween the transformed observations may be viewed as distances between the
original observations in a different metric 777, that can be expressed as
TTT = USVTVSUT = U,S}U[ using the singular value decomposition of
T. The obtained expression reveals that the effect of the full-dimensional
transformation 7' is captured by the first k left-singular vectors of T' scaled
by the corresponding non-zero singular values, whose number gives an answer
to the question of how many dimensions are needed in the transformed space.

While the above discussion is concentrated mostly on the two-class con-
figuration, it is straightforward to generalize the presented formulation to a
multiple-class discriminant analysis setting, for the number of classes K > 2:

K-1

log Jr (T Z ( O Sy (T B(i)SB(T)(i))- (8)

i=1

5 Experimental results

Our empirical analysis was based on data sets from the UCI Machine Learn-
ing Repository, Blake and Merz (1998). First of all, we verified that the
solutions of the optimization problem formulated in Section 2 found by the
proposed method were of better quality compared to those of generic tech-
niques, confirming the results reported by Van Deun and Groenen (2003),
and Webb (1995). Indeed, numerous random initializations of the gradient
search led to inferior as well as unstable results reflected in higher values of
log J (see Figure 2), while the IM-based method proved nearly insensitive
to the choice of the initial supporting point and regularly reached far lower
criterion values maintaining convergence property at all times, as illustrated
in Figure 3. We also validated the proposed dimensionality reduction tech-
nique by analysing how the classification performance varied with respect to
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Fig. 2. Two-dimensional discriminative projections of the Sonar data set: inferior
solutions found by the gradient descent method
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Fig. 3. Convergence of the IM procedure in the DDA method
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Fig. 4. Dimensionality reduction experiments: classification performance results
(left) and singular values of T € R™*™ (right). The dashed lines mark the boundary
that determines the dimensionality of the transformed space.

k, the dimensionality of the transformed space, and how it was related to the
number of non-zero singular values of the full-dimensional transformation, an
example of which for the Sonar data set is depicted in Figure 4. The right
pane plots 10 largest out of 60 singular values of the full-dimensional trans-
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formation, in descending order, while the left diagram' shows the results of

10-fold cross-validation experiments with respect to the transformed space
dimensionality. It is easy to see that the singular values beyond the 7¢" are
virtually zero. And as the diagram on the left confirms, adding dimensions
beyond 7 no longer improves the classification performance (confirmed by
Chow test at 99% confidence).

The experiments with the rest of the UCI data sets compared 10-fold
cross-validation classification performance of the nearest neighbor classifier
in the original feature space (denoted as NN) and that achieved in the trans-
formed space derived by the proposed distance-based discriminant analysis
method (denoted henceforth as DDA+NN). Therefore, the goal of this analy-
sis was to assess the effect of applying a DDA transformation on the accuracy
of the NN classifier. The error rates of NN and DDA+NN data classification
experiments are presented in Table 1, showing a consistent improvement in

Table 1. Classification results for UCI data sets

Data set Classes|% Error of NN|% Error of DDA+NN
Hepatitis 2 29.57 0.00
Tonosphere 2 13.56 7.14
Diabetes 2 30.39 27.11
Heart 2 40.74 21.11
Monk’s P1 2 14.58 0.69
Balance 3 21.45 3.06
Iris 3 4.00 3.33
DNA 3 23.86 6.07
Vehicle 4 35.58 24.70

performance. A separate set of experiments (see Kosinov (2003) for details)
using the ETH80 database also revealed the importance of the length con-
straint, introduced in Section 3 to avoid overfitting. Both unconstrained and
length-constrained solutions found by the DDA procedure lead to zero er-
ror rate on the training data, but turned out to perform quite differently
on the test data sets, on which the length-constrained version of the pro-
posed method demonstrated up to 20% better classification accuracy. Ad-
ditionally, the results of our more recent experiments reveal that the DDA
combined with an SVM classifier, Cristianini and Shawe-Taylor (2000), pro-
duces a smaller number of support vectors in the solutions found via the
transformed space, which leads to better classification accuracy.

! Dot-filled bars denote performance achieved by fixing k a priori, while shaded
bars show results obtained from a k-truncated SVD of the full-dimensional trans-
formation.
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