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Abstract— Information fusion, especially for high dimensional
multimedia data, is still an open research problem. In this article,
we present a new approach to target this problem. Feature
information interaction is an information-theoretic dependence
measure that can determine synergy and redundancy between
attributes, which then can be exploited with feature selection
and construction towards more efficient information fusion. This
also leads to improved performances for algorithms that rely
on information fusion like multimedia document classification.
We show that synergetic and redundant feature pairs require
different fusion strategies for optimal exploitation. The approach
is compared to classical feature selection strategies based on
correlation and mutual information.

Keywords— multimodal information fusion, feature selection,
feature information interaction

I. INTRODUCTION

Multimedia data processing received, in the last decade, a
lot of attention by research communities due to the “multime-
diatisation” of the WWW as well as of private and professional
data collections. Due to the multimodal nature of their input
data, multimedia indexing, retrieval and classification systems
have in their cores an essential need for information fusion.
Over the last decades, the fusion of information with its
various application areas has established itself as an inde-
pendent research area but a general theoretic framework to
describe information fusion systems is still missing [9]. The
still limited understanding of how fusion works and by what
it is influenced is probably a reason why multimedia retrieval
is up to today staying behind expectations. For example, in
the INEX 2006 Multimedia Task [15] text-only based runs
outperformed multimedia-based ones. In INEX 2007, this did
not change. The results of the TrecVid evaluation workshop,
where the top ranked runs all use multimedia data are an
exception because the noisy speech transcript weakens the
textual modality.

The work so far done on information fusion in multimedia
settings may be divided into two main directions: (1) fusion
of independent or complementary information by assuming or
creating independence and (2) fusion of dependent information
by exploiting their inhered statistical dependencies. Both ap-
proaches have been applied in multimedia processing problems
equally successful - neither of this approaches is in general
superior.

To circumvent the “curse of dimensionality” that hinders
information fusion in high dimensional spaces characteristic to

multimedia data, preprocessing techniques like feature selec-
tion and construction are often incorporated. Those algorithms
try to determine relevant features and modalities towards the
fusion goal with “feature relevance” meaning “optimality”
being still under discussion [8].

Aligned to the second idea, we present an information
fusion approach that is based on the prediction of optimal
feature subsets out of all modalities using as a measure feature
information interactions. It is an entropy-based dependence
measure that is superior to traditional dependence ones due
to its consistent definition, its global application to the whole
feature set (instead of only looking at pairwise dependencies)
and its targeting at linear as well as higher order statisti-
cal dependencies. Under the light of this new definition of
multivariate feature relations, we show how current machine
learning algorithms including feature selectors do not treat
the feature statistical dependencies right. They mostly apply
a greedy or myopic strategy based on local, pairwise feature
relations.

In section II, we present related work that is engaged in
finding complex feature relationships for feature selection and
information fusion. Next, the theory of feature information
interaction is given in section III, including a discussion on
how its different types, synergy and redundancy, can be ex-
ploited to improve fusion algorithms. Experiments on artificial
data sets show what feature relationships can be detected
with feature interactions and that they outperform pairwise
dependence measures (section IV). Classification experiments
with a multimedia data collection show the superiority of our
approach compared to greedy feature selectors e.g. based on
correlation and mutual information (section V).

II. RELATED WORK

The importance of feature interactions for e.g. data mining,
knowledge detection, dimensionality reduction and feature
selection is an intense and fruitful field of research. For
example, [4] gives a good introductory discussion about the
relevance of attribute interactions for attribute construction,
detection of Simpson’s paradox, coping with attribute disjoints
and why greedy attribute selection does not work well. As a
solution, the researchers suggest genetic algorithms to conduct
an efficient global search.

Another early paper ([10]) proposes to replace the greedy or
so-called myopic feature selections in inductive learning with



the RELIEFF system. It learns top-down decision trees that
capture conditional dependencies between attributes largely
outperforms other machine learning approaches of that time
like Naive Bayes, LFC (lookahead Feature Construction) and
k-NN. A recent extension of this approach, the tree dependent
component analysis (TCA) learns within-cluster dependencies
and independencies between clusters [1].

In [8], wrapper methods for feature selection are presented
that outperform filter approaches based on decision trees
like RELIEFF. The main disadvantage of filter approaches is
the ignorance of the effects of the feature selection on the
induction algorithm performance. This is overcome by forward
or backward searching in the feature subsets and evaluating
their optimality by means of the induction algorithms accuracy.

More recent approaches include multidimensional projec-
tions to find complex logical feature relations (see e.g. [13]).
Research on how to calculate information-theoretic quantities
efficiently for large dimensions with having only a little
number of training data can be found in [14].

Probably the most related work to ours is presented in
[5]. In bio-informatics, they already use feature relations
(synergistic gene pairs) to improve microarray-based classi-
fication, which needs simultaneous profiling of thousands of
genes with various conditions. Since the problem definition is
very similar to our multimedia document classification tasks
(high dimensionality, small number of training data, low level
features), we started to investigate its application in multimedia
settings.

III. FEATURE INFORMATION INTERACTION

Interactions are a multivariate, information-theoretic based
feature dependence measure [6], [7]. Before its introduction,
there was no unifying definition of feature dependence in
multivariate settings, but similar formulae have emerged inde-
pendently in other fields from physics to psychology. Feature
information interaction, or co-information as it was named
in [2], is based on McGill’s multivariate generalization of
Shannon’s mutual information. It describes the information
that is shared exclusively by all of k random variables, without
overcounting redundant information in attribute subsets. Thus,
it finds irreducible and unexpected patterns in data that are
necessary to learn from data [13].

We expect that exploiting this new source of informa-
tion can help machine learning algorithms to improve their
performance. For example, attribute interaction is helpful in
domains where the lack of expert knowledge hinders the
selection of very informative attributes sets by finding in-
teracting attributes needed for learning. Another example is
the case when the attribute representation is primitive and
attribute relationships are more important than the attributes
themselves. Then, similarity-based learning algorithms will
probably fail, because the proximity in the instance space is
not related to classification in this domain. Both cases apply
to multimedia settings.

The k-way interaction information as found in [6] for a
subset S ⊆ X of all attributes X = {X1, X2, ..., Xn} is
defined as:

I(S) = −
∑

T ⊆S(−1)|S|−|T |H(T )
= I(S \ X |X) − I(S \ X), X ∈ S (1)

with the entropy defined as:

H(S) = −
∑

ῡ∈S̄

P (ῡ)log2P (ῡ), (2)

where the cartesian product of the sets of attribute values
X̄ = X1 × X2 × ... × Xn is used. The feature interaction
for k = 1 reduces to the single entropy, for k = 2 to the
well known mutual information and for k = 3 attributes to
McGill’s multiple mutual information:

I(A; B) = H(A) + H(B) − H(A, B) (3)

I(A; B; C) = I(A; B|C) − I(A; B)
= H(A, B) + H(A, C) + H(B, C)
− H(A) − H(B) − H(C) − H(A, B, C). (4)

According to this definition, 3-way information interaction
will be only zero iff A and B are conditionally independent
in the context of C, because then I(A; B|C) = I(A; B). So
it gives only the information exclusively shared by all three
attributes.

Information interactions as defined here are stable and
unambiguous, since adding new attributes does not change
already existing interactions, but only adds new ones. Further-
more they are symmetric and undirected between attribute sets.
In general, two levels of interactions are important: (1) relevant
non-linearities between the input attributes I(A; B; C), which
can be used in unsupervised learning and (2) interactions
I(A; B|L) between the input attributes A, B and their indica-
tor or class label L, which are needed in supervised learning.

Information interaction is not to be confound with multi-
information as presented in [11]. This dependence measure is
based on the Kullback-Leibler divergence between the joint
probability of Xi, i = 1...M attributes and their marginals:

Imulti(X) =
∑

i

H(Xi) − H(X) =
∑

x

P (x)log2
P (x)∏
i P (xi)

Multi-information also results for i = 2 in mutual informa-
tion, but for i = 3 attributes, it differs from the information
interaction, because it results in:

Imulti(A, B, C) = H(A) + H(B) + H(C) − H(A, B, C).



Hence, it can capture higher order statistical dependencies,
but is not taking into account the context of the other variables,
the pairwise interactions. This way, multi-information overfits
the k-way mutual information by counting redundant feature
dependencies several times.

An important characteristic of feature information interac-
tions is that it can result in positive and negative values. To
information theoreticians, negative mutual information has no
meaning. In [6], [7], an interpretation towards differentiating
different basic types of feature interactions is given and is
presented in the following subsections in more detail.

A. Positive interaction: Synergy

In case of positive interaction, it can be said that the
process benefits from an unexpected synergy within the data.
In statistics, this phenomena is also known as moderating
effect and is discussed since a long time. Synergy occurs when
A and B are statistically independent, but get dependent in the
context of C as is symboled in figure 1. In the ordinary graph
of the variables and their feature interactions, this is depicted
by small pairwise relations between I(A, C), I(B, C) and
I(A, B) which are in sum smaller than the 3-way interaction
I(A, B, C). In [6], this type of interaction is described as
observational, because the relationships between the features
can only be found by looking at all of them at once.

Fig. 1. Synergy: positive 3-way feature interaction with A, B being
independent

Myopic feature selection strategies are unable to exploit the
synergy in the data. Synergetic feature subsets can be exploited
by feature selection and construction, as is shown in Section
V.

B. Negative interaction: Redundancy

Negative interaction occurs when attributes partly contribute
redundant information in the context of another attribute,
which leads to a reduction of the overall dependence. It is
visualized in Figure 2 where the redundant attributes A, B are
related to a third attribute or class label C. The graph clarifies
that if the sum of pairwise interactions I(A, C), I(B, C) and
I(A, B) includes the high interaction of a correlated pair, the
information interaction or gain I(A, B, C) drops to a nega-
tive value representing the information loss by redundancy.
This type of interaction is called representational, because it
includes some conditions on all involved attributes.

The negative influence of redundancy can theoretically be
resolved by eliminating unneeded attributes, but in practice, it
could be also advantageous in the case of noisy data.

Fig. 2. Redundancy: negative 3-way feature interaction with A, B being
dependent

In all cases, myopic voting functions that are based on the
independence assumption as well as other fusion algorithms
that use only local dependencies are confused by positive
and negative feature interaction, which results in decreased
performance of information fusion systems. Furthermore, ex-
periments show that it is generally harder to resolve the
influence of negative interactions.

IV. EXPERIMENTS ON ARTIFICIAL DATA

To validate our model, we first present extensive test results
on artificial data that analyze how feature relationships can
be determined with feature information interaction and multi
information. The goal is to understand why these dependence
measures are superior to traditional pairwise measures like
correlation and mutual information. These findings can then
be used to better exploit relevant feature dependencies in
real world data by learning complex feature relationships and
hence improving for example information fusion in multimedia
problems (see section V).

A. Simple tasks: AND and OR

First, we investigate the two basic relations that can inter-
connect features: the boolean AND and OR. The test sets were
created as follows with 10’000 samples:

• AND: The domain consists of six random and hence
independent informative binary attributes. The class label
is true if And(s) = [s1

∧
s2

∧
s3], which results in a set

with circa 15% true class labels. Disregarding the label,
it is a completely random set, thus no feature relations
can be found. Otherwise, it is an easy task and should be
solved by all dependence measures.

• AND 25 and 50: These sets are created by the AND
rule such that they hold 25% and 50% true class labels,
respectively. All missing values are filled in randomly.
These sets also contain patterns that can be found without
regarding the class label.

• OR: The domain has again six independent attributes
where Or(s) = [s1

∨
s2

∨
s3]. Here the set has circa

50% true class labels.
• OR 25: That is why we added just one rule-based set

having 25% true class label, which is created in the same
way as before the additional AND sets.



For each of the 5 sets, we calculated the dependence mea-
sures, absolute correlation, mutual information, 3-way feature
interaction, 3-way multi information, 4-way feature interaction
and 4-way multi information, on the unsupervised input (the
input conditioned on the class label) and the supervised input
(where we use the class label as an input variable). The results
are given in Table 1. We give the maximum dependency values
(between brackets) and the associated feature numbers for the
non-negative and pairwise measures as absolute correlation,
mutual information and the multi-information. For the k-
way feature information interaction, we give the minimum
and maximum values, if they exist, with their associated
feature numbers. For this first two tasks the features 1, 2, 3
are dependent on the class label and all should be found by
the measures.

As is clear from the data creation, the unsupervised input
task for the AND and OR task are unsolvable. The AND, AND
25 and AND 50 task is solved easily by nearly all dependence
measures. This is because even though the problem has
three dependent attributes, it can be divided in pairwise sub-
problems e.g. the relation between two dependent attributes
or the relation between one dependent attribute and the class
label and thus is solvable by pairwise dependence measures.

Regarding synergy and redundancy, we see that the 3-
way feature information interaction determines most of its
results with negative values which indicates redundancy. For
4-way information interactions, the result is less clear: the
unsupervised task is never solved, the task with conditioned
class labels results in high synergies (positive values) and for
the class label and feature input it results in redundancy. For
the latter, it should be noted that those negative result values
for finding the class features are in fact the maximum values
of the dependence measure distribution. In the minimum and
therewith high redundant values, the features being not depen-
dent on the class can be found. The theoretically weaker multi
information outperforms one time the feature interactions in
the AND 25 unsupervised case.

The OR and OR 25 tasks are more difficult to solve, because
the problem is not dividable into subproblems, but all of the
dependent attributes have to be taken into account at once.
That is why all pairwise measures fail. The 3-way feature
interactions finds in the dependent features synergies, the 4-
way feature interactions for the OR tasks result in similar
values as for the AND tasks except that there are no synergies
for the class conditioned case, but negative values which are
again the maxima of the dependence measure histogram.

It can be concluded from this experiment that 3-way fea-
ture information interaction determines redundancy for AND
connected attributes and synergy for OR connected ones.
In 4-way feature information interaction, the class-dependent
attributes can be found by taking the maximum value and
the class-independent attributes by regarding the minima.
Even though multi information finds more often the class
dependent attributes correctly it has the disadvantage of not
showing the synergy and redundancy informations. Pairwise

dependence measures can only find redundant features in AND
connections.

B. complex and hierarchical boolean constructs

In this experiment, we investigate if the dependence mea-
sures can resolve more complex feature relations like for
example in feature hierarchies and the XOR problem. The
following data sets have been created with 10’000 samples:

• ParityAnd(i,j): Domain with 12 random attributes
where the class label is true if oddand(s) =
odd(si, s6)

∧
odd(s7, sj). Whereas odd(s) is true the

sequence has an odd number of ones [12].
• ParityXOR(i,j): Domain with 12 random attributes

where the class label is true if oddxor(s) =
NOT (odd(si, s7))

∨
odd(s8, sj). Whereas odd(s) is true

the sequence has an odd number of ones [12].

The results for each task and dependence measure are shown
in Table 2. We dropped from the table the unsupervised
case since it is, by definition, completely random and hence
contains no information.

At first sight the ParityAnd tasks 5 − 8 and 4 − 8 are of
order N = 4 and N = 5 respectively. But they can also be di-
vided in two sub-problems that are AND-connected and of size
N = 2 or N = 3. They are (at least for the class conditioned
case) solvable by the pairwise dependence measures, but due
to the hierarchy, they fail for the supervised case. For the 3-
way and 4-way feature interactions and multi-information, the
relation hierarchy is robustly resolved. With the latter, in the
class-conditioned case and for the ParityAnd 5 − 8, even all
dependent attributes are found in combination. In the results of
the ParityAnd 4 − 8, the feature information interactions are
the first time outperforming the multi-information, because in
two cases it finds both dependent subsets, whereas the multi-
information resolves only the N = 2 sub-problem. The Parity
XOR task behaves similar to the N = 4 ParityAnd task.
This experiment showed that feature information interaction
outperforms multi-information for more complex attribute
relationships.

V. CLASSIFICATION EXPERIMENTS

In this section, we now present classification experiments
that compare our approach of feature selection and construc-
tion based on feature information interaction to a baseline
system that uses no feature selection and systems that do a
feature selection based on correlation and mutual information.
The goal is to determine if the knowledge of synergies and
redundancies can improve a classification task and how it is
best exploited.

As test collection, we chose the Washington collection,
which consists of 886 images that are annotated with 1 to
10 keywords and are grouped into 20 classes. The feature set
that we extracted from the raw data consists of the global
color and texture histograms which have 166 and 165 features
respectively. The text component is represented by the term



Table 1. Results for AND and OR tasks with each row being: D(..) unsupervised input, D(..|L) input conditioned on class label and D(.., L) supervised

input by joining attributes and class label

AND absolute 2D mutual 3D feature 3D multi 4D feature 4D multi
correlation information interaction information interaction information

D(..) − − − 2, 3(1.0) 2, 3, 6, 3(−0.002) 2, 2, 3, 6(1.08)
6, 3, 5, 4(−2.57)

D(..|L) 1,2(0.4) 1,2(1.8) 1,2,3(−2.9) 1,2,3(2.9) 1,1,2,3(3.99) 1,1,2,3(3.99)
2,3(0.4) 2,3(1.8) 6, 4, 5, 5(−5.18)

D(.., L) − 1(0.1) 1,2(0.019) 1,2(0.29) 2,1,3(−4.56) 1,2,3(0.53)
2(0.1) 2,3(0.021) 1,3(0.28) 6, 5, 4(−5.18)
3(0.1)

AND 25 D(..) 1,2(0.2) − 1,2,3(0.005) 1,2,3(0.093) 2, 3, 6, 3(0.12) 1,1,2,3(1.05)
2,3(0.2) 6, 5, 3, 4(−2.023)

D(..|L) − 1,2(1.8) 1,2,3(−2.86) 1,2,3(2.86) 1,1,2,3(3.82) 1,1,2,3(3.87)
2,3(1.8) 6, 5, 6, 4(−5.12)

D(.., L) 1(0.5) 1(0.2) 1,2(−0.029) 1,2(0.41) 4, 5, 6(−5.62) 1,2,3(0.61)
2(0.5) 2(0.2) 1,3(−0.033) 1,3(0.41) 1,2,3(−4.67)
3(0.5) 3(0.2)

AND 50 D(..) 1,2(0.3) 1,2(0.1) 1,2,3(−0.008) 1,2,3(0.21) 1, 3, 6, 1(0.41) 1, 2, 5, 5(1.08)
2,3(0.3) 2,3(0.1) 3, 4, 3, 5(−2.71)

D(..|L) − 1,2(1.6) 1,2,3(−2.44) 1,2,3(2.44) 1,1,2,3(3.27) 1,2,3,3(3.26)
2,3(1.6) 6, 5, 6, 4(−5, 36)

D(.., L) 1(0.6) 1(0.3) 1,2(−0.078) 1,2(0.62) 4, 5, 6(−5.99) 1,2,3(0.92)
2(0.6) 2(0.3) 1,3(−0.070) 1,3(0.61) 1,2,3(−4.09)
3(0.6) 3(0.3)

OR D(..) − − − − 1, 2, 1, 6(−2.5) 1, 1, 5, 6(1.0)
D(..|L) − − 1,2,3(0.99) 1,2,3(1.0) 1,2,2,3(−3.50) 1,2,3,3(2.0)

5, 6, 4, 3(−5.99)
D(.., L) − − − − 1,2,3(−4.99) 1,2,3(1.0)

4, 3, 6(−5.99)
OR 25 D(..) − − 1,2,3(0.052) 1,2,3(0.052) 4, 3, 4, 1(−2.51) 1,1,2,3(1.05)

D(..|L) − − 1,2,3(0.99) 1,2,3(1.0) 3,1,1,2(−3.49) 1,1,2,3(2.0)
4, 6, 2, 3(−5.99)

D(.., L) − − − − 1,2,3(−5.43) 1,2,3(0.25)
6, 5, 4(−5.67)

frequencies of each image keywords, where the dictionary size
is 295.

The classification is done in all experiments with the sup-
port vector machine (SVM) algorithm using a RBF kernel
following two different fusion strategies: (1) early information
fusion (data fusion) that applies one SVM to the concatenated
feature vector and (2) late information fusion (hierarchical
fusion), where first a SVM is applied to each modality (color,
texture, text), then these results are combined with another
SVM. For both cases, we ran a cross-validation to optimize the
parameters of the SVM. As training set, we randomly selected
for each run and class 7 positive and 7 negative examples,
the rest was used as test set. The experiments were ran with
the one-againt-all classification strategy, where the precision
values were averaged over all classes. Finally, the presented
results are also averaged over ten runs, if nothing is otherwise
stated.

A. Feature selection

A simple but nevertheless common strategy for feature
selection approaches that exploit statistical dependencies in
a supervised setting is the calculation of the pairwise rela-
tionships between the attributes and the class labels [3]. As
dependency measures to compare our approach with, we chose
absolute correlation and mutual information. After ranking the
attributes in descending order, the best N are selected as input
for the subsequent classification, where we set N = 70 for the
following experiments.

Our feature selection strategy based on feature information
interactions works similar. First, we calculate empirically all
the 3-way feature interaction I(A, B, L) between two features
A, B and the class label L. Then again, the features are ranked
according to their involvement in a 3-way interaction, where
we discern three different strategies: (1) absolute interactions,
(2) positive values (synergy) and (3) negative values (redun-



Table 2. complex and hierarchical problems

PartiyAnd 5 − 8 absolute 2D mutual 3D feature 3D multi 4D feature 4D multi
correlation information interaction information interaction information

D(..|L) 5,6(0.1) 5,6(1.0) 5,5,6(−1.0) 5,5,6(2.0) 7,8,5,6(−3.49) 5,6,7,8(2.0)
7,8(0.1) 7,8(1.0) 7,8,8(−1.0) 7,8,8(2.0) 4, 3, 2, 9(−5.99)

D(.., L) − − 5,6(0.31) 5,6(0.31) 5,5,6(−3.65) 5,5,6(1.31)
7,8(0.32) 8,7(0.32) 7,7,8(−3.66) 7,7,8(1.32)

4, 11, 10(−5.67)
ParityAnd 4 − 8 D(..|L) 7,8(0.1) 7,8(1.0) 4,5,6(0.99) 8,7, 4(1.0) 7,7,7,8(0.001) 7,7,7,8(3.0)

7,7,8(−1.0) 7,7,8(2.0) 5, 3, 1, 2(−5.99)
4,7,7,8(−1.02)

D(.., L) − − 7,8(0.31) 7,8(0.31) 7,8,7(−3.66) 7,7,8(1.31)
4,5,6(−5.36)

12, 11, 9(−5.67)
ParityXOR 6 − 9 D(..|L) 6,7(0.3) 6,7(0.1) 6,7,7(−0.09) 7,7,6(1.09) 6,7,8,9(−5.53) 6,7,8,9(0.41)

8,9(0.3) 8,9(0.1) 8,8,9(−0.08)
D(.., L) − − 6,7(0.32) 7,6(0.32) 7,7,6(−3.65) 7,6,6(1.31)

8,9(0.31) 8,9(0.31) 8,8,9(−3.65) 8,9,9(1.31)

dancy). Again the first 70 attributes are selected.

The full calculation of the 3-way feature information inter-
action matrix is not feasible even for a rather small collection
like Washington, because its size grows exponentially with
the size of the feature vector. That is why we applied random
subsampling from a normal distribution in the feature and class
label spaces. The sample size was set to 80′000, which largely
under samples the space of size [626, 626, 20]. One should
keep in mind therefore that all the following results are based
on an incomplete interaction matrix.
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Fig. 3. Precision without and with different feature selection algorithms
(hierarchical classification)

The mean average precision over the runs and classes of the
Washington collection are given in Table 3 for the hierarchical
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Fig. 4. Precision without and with different feature selection algorithms (data
classification)

(hier) and data fusion strategy (data). Additionally we list
the number of times an approach is performing best for the 20
classes (best), which can be more than one approach per class.
The algorithms tested are the baseline system with all fea-
tures (all), the feature selection based on absolute correlation
(corr), mutual information (mut2D), absolute 3-way feature
interaction (abs(mut3D)), synergy (syn) and redundancy (red).
Figures 3 and 4 depict the precisions for each class.

In average, the correlation-based feature selection performs
best in the hierarchical fusion as well as in the data fusion,
whereas the latter is strongly outperformed by the hierarchical
fusion approach. If we count the number best performing pre-



Table 3. Mean average precision and best value counts for classification on

the full feature set and the tested feature selection methods

all corr mut2D abs(m3D) syn red

hier 0.423 0.443 0.403 0.310 0.193 0.391

best 10 8 3 − − 4

data 0.140 0.330 0.191 0.088 0.085 0.100

best 3 18 3 2 2 2

cision values the classification system without feature selection
is best in case of hierarchical fusion. There it is also in terms
of mean precision not significantly inferior to the correlation-
based system. The place of the third best system is shared by
the feature selection based on mutual information and the one
based on redundancy. The first has a better average precision
value, but the second has the best value for more classes.
The systems based on absolute information interactions and
synergetic features are completely unfeasible.

We conclude from this experiment that the baseline with a
hierarchical fusion over the modalities is still a hard baseline
to improve. The standard feature selection approach based
on correlation has not improved it significantly. Concerning
the performance of our approaches based on information
interaction, we conclude that with feature selection only the
redundancy information can be exploited, but this is not
sufficient to attain an equal performance as the baseline or
the correlation based feature selection.

B. Feature construction

Synergies cannot be exploited by simple feature selection
as we have seen in the previous experiment. So we apply a
simple feature construction that is based on synergetic feature
pairs found in the input data.

To do so, we calculated empirically all the feature inter-
actions I(A, B|L) between two features A, B conditioned on
the class label L. Again the complete calculation is infeasible,
so we under sampled the result matrix as described above.
Then, we ranked the feature pairs according to their magnitude
of interaction, where the highest interaction value represents
a highly synergetic feature pair. Thus, the ranking gives us
the order of relevance of the feature pairs in solving the
classification task. In the runs, the best N are chosen as input.
The feature construction itself is set up as a hierarchical SVM.
First, we create a mid-level feature over each feature pair by
using a SVM, which are then fused in a second level SVM
towards the complete classification result.

The results for class 19 of the Washington collection are
shown in Figure 5 for one to ten feature pairs. The hierarchical
fusion on the full feature set (all) is outperformed by the
feature construction based on synergetic features (fconstsyn)
on four and more feature pairs. The redundant feature pairs
(fconstred) perform much worse, hence redundancy cannot be
exploited by feature construction.
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Fig. 5. Precisions for the full set compared to feature construction based on
synergetic and redundant feature pairs (class = 19)

Our simple feature construction based on synergetic feature
pairs can significantly outperform the baseline with only a
small number of features used as input.

VI. CONCLUSION

We reviewed strategies for information fusion in high-
dimensional feature spaces. They are classically based on the
definition of mutual information and cannot detect information
beyond pairwise relationships.

We then presented a promising new approach for fus-
ing multimodal information which is of importance e.g. for
multimedia document classification as well as many other
applications. Experiments based on artificial data validated our
approach. The algorithm based on fusing synergetic feature
pairs is significantly outperforming the simple hierarchical
fusion on the full feature set as well as the fusion based
on greedy pairwise feature selectors, which are often used in
machine learning. In direct comparison the feature information
interactions perform best, but probably for problems consisting
only of simple attribute relationships the multi information is
sufficient and having the advantages of cheaper calculation and
higher robustness.

The calculation of the feature information interactions still
requires improvments. In turn, this may improve the actual re-
sults even further. A more profound understanding of synergy
and redundancy and how it is represented in k-way feature
information interaction is also needed. On a more general level
the aim is to find a theoretic explanation of why interaction-
based approaches outperform the myopic ones.
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