Combining Multimodal Preferences for Multimedia
Information Retrieval

Eric Bruno, Jana Kludas, Stéphane Marchand Maillet
Viper group - Computer Vision and Multimedia Lab
University of Geneva, Switzerland
name.surname@cui.unige.ch

ABSTRACT

Representing and fusing multimedia information is a key is-
sue to discover semantics in multimedia. In this paper we
address more specifically the problem of multimedia content
retrieval by first defining a novel preference-based represen-
tation particularly adapted to the fusion problem, and then,
by investigating the RankBoost algorithm to combine those
preferences and a learn multimodal retrieval model. The
approach has been tested on annotated images and on the
complete TRECVID 2005 corpus and compared with SVM-
based fusion strategies. The results show that our approach
equals SVM performance but, contrary to SVM, is parame-
ter free and faster.

Categories and Subject Descriptors

H.5.1.f Image/video retrieval]; 1.2.6.g [Machine learn-
ing]; 1.2.6.b [Concept learning]

General Terms
Theory

Keywords

multimodal fusion, multimedia indexing and retrieval, Rank-
Boost

1. INTRODUCTION

Determining semantic concepts by allowing users to iter-
atively and interactively refine their queries is a key issue
in multimedia content-based retrieval. The Relevance Feed-
back loop allows us to build complex queries made out of
documents marked as positive and negative examples. From
this training set, a learning process has to create a model
of the sought concept from a set of data features to finally
provide relevant documents to the user. The success of this
search strategy relies mainly on the representation spaces
where data is embedded as well as on the learning algorithm
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operating in those spaces. These two issues are also intrinsi-
cally related to the problem of adequately fusing information
arising from different sources. Various aspects of these prob-
lems have been studied with success for the last few years.
This includes works on machine learning strategies such as
active learning [5], imbalance classification algorithms [28],
automatic kernel setting [27] or automatic labelling of train-
ing data [25]. Theoretical and experimental investigations
have been achieved to determine optimal strategies for mul-
timodal fusion: Kittler et al and R. Duin studied different
rules for classifier combination [12, 6]; Wu et al propose
the super-kernel fusion to determine optimal combination of
features for video retrieval [24]. In [10], Maximum Entropy,
Boosting and SVM algorithms are compared to fuse audio-
visual features. A number of further relevant references may
be found into the Lecture Notes series on Multiple Classifier
Systems [16].

All these studies have in common the fact that they con-
sider feature spaces to represent knowledge from the multi-
media content. This representation requires to deal in par-
allel with many high-dimensional spaces expressing the mul-
timodal characteristics of the documents. This mass of data
makes retrieval operations computationally expensive when
dealing directly with features. For instance, the simple task
of computing the distance between a query element and all
other elements becomes infeasible in a reasonable time when
involving hundred of thousands of documents and thousands
of heterogeneous feature space components. This problem
is even more sensible when similarity measures are com-
plex functions or procedures, such as prediction functions
for temporal distances [3] or graph exploration for seman-
tic similarities [19]. The diversity of the features involved
is also a difficulty when dealing with fusion and learning.
The multimedia descriptors may indeed be extracted from
visual, audio or transcript streams using various operators
providing outputs such as histograms, filter responses, sta-
tistical measures or symbolic labels. This heterogeneity im-
poses building complex learning setup that need to take into
account all the variety of the features’ mathematical and se-
mantic properties [22][26].

In [2], we considered an alternative representation based
on dissimilarity spaces [17]. This representation is a first
step to obtain a unified representation of multimodal con-
tent but still leaves open the problem of how to properly
scale the similarity values to make them homogeneous. In
this paper, we propose to consider only ordering information
from dissimilarity spaces. The result is a preference space
where every item is indexed with ranking positions. The



scaling issue is thus completely alleviated and we effectively
obtain a unified representation of multimodal content, but
at the price of losing an important amount of the initial in-
formation (section 3). Retrieving items from the preference
space is then a ranking problem (section 4) that can be ad-
dressed using the RankBoost algorithm (section 5). Exper-
iments on artificial and real data (images and videos) show
that the preference space associated to RankBoost competes
with SVM learning in feature and dissimilarity spaces and is
therefore a valid approach for multimodal retrieval (section
6).

2. PROBLEM DEFINITION

Let us consider a collection X containing ! multimedia
documents x that we are interested in ranking.

The query by example search paradigm consists in gather-
ing user’s judgements indicating, for some objects, whether
they are relevant or irrelevant to the user request. This set,
denoted Q, is called the query and is composed of positive
and negative subsets, respectively

P = {xZL b and N = {z; }iy,

with @ = PUN and ¢ = p+n. The query Q is then used to
train a machine that will produce a decision function ranking
documents according to their relevance to the query.

This paradigm might be embedded in the Relevance Feed-
back (RF) strategy, where these two steps (user judgement
and ranking estimation) are iterated until the search con-
verges to a satisfactory result.

3. MULTIMODAL CONTENT REPRESEN-
TATIONS

Expressing multimodal content involves first to extract
various descriptors from the multimedia objects. Ideally,
each descriptor depicts an appropriate aspect of the multi-
modal features of the documents. Assuming such descrip-
tors are available, we discuss in the following how efficient
representations may be derived to store descriptors and to
facilitate their fusion.

3.1 Feature-based representation

Assuming m distinct descriptors are designed (and extrac-
tion procedures implemented), the multimodal represention
of an object  is the set of m feature vectors {x*}7"; liv-
ing respectively in feature spaces {F k1m  The dimension
of each feature space intrinsically depends of the descrip-
tor they express. The feature-based representation is rather
straightforward, but not really convenient since it mixes het-
erogeneous vectors of various dimensions and scales. Fusion
and ranking algorithms need to manage the diversity of the
representation, thus making them more dependent on com-
plex parameter setting procedures and less flexible to handle
new descriptors.

To avoid this situation, modality-independent representa-
tions are desirable. For that purpose, (dis)similarity-based
representations have been recently proposed [1, 2, 9, 15]. As
pointed out by these authors, similarities are convenient to
manipulate multimodal information since they form a homo-
geneous representation of the content. Moreover, similarity
representations are generally made such as their dimension-
ality remain much lower than their feature counterparts.

3.2 Dissimilarity-based representation

In [4], we proposed a Query-based Dissimilarity Space (QDS),

derived from the dissimilarity spaces introduced by Pekalska
et al [17]. For a given feature space F * the corresponding
QDS, denoted D%, is defined relatively to the positive set P
by the mapping d*(z, P) € R?

d"(z,P) = [d"(z,a7),d" (z,23),... d"(z, &))", (1)

p

where d*(z, z]) € RT is the dissimilarity from any object
r € X to the prototype xf’ when the measure is done in
F*. Using QDS, an object z is thus represented with a set
of m dissimilarity vectors {d*}7, living in p-dimensional
dissimilarity spaces {D}7,,

d*(z1,27)  d¥(z2,27) d*(zy, 7))
. d*(z1,xf) d¥(ze,zf) ... dF(z, )
dk(xl,x;) dk(mg,x;) dk(ml,x;r)

The QDS approach provides a unified representation of
multimodal information channels. Moreover it is particu-
larly adapted to the class asymmetry typically exhibited by
the positive and negative classes [4]. However, the issue
of how properly scaling dissimilarity spaces so that modali-
ties become easily comparable still remains . This problem
might be left out to the fusion and ranking algorithms [2],
but a more elegant solution would be to end up with a fully
homogeneous multimodal representation.

3.3 Preference-based representation

We propose to simplify the QDS representation by replac-
ing the dissimilarity components d* (z, xj’) with the ranking
position 7F () € N of an object z with respect to the proto-
type mj according to the dissimilarity d® and the collection

X?
mi(z) = Y [d" (e, af) < d" (2] ®3)

T;EX

The notation [«] is defined to be 1 if predicate s holds and 0
otherwise. For the sake of readability, the double indices no-
tation 7¥ is simplified to wj, j=1,...,pm, with j iterating
over all objects 2 € P and for the m modalities.

The multimodal representation of an object x now be-

comes a unique vector of preferences 7(z) = [r1(z), ..., Tpm(2)]"

The multimodal preference space embedding all objects x €
X is

Tpm (T1)  Tpm(T2) Tpm (T1)

It consists in a unique pm-dimensional space providing a
fully homogeneous representation of multimodal informa-
tion. Similarly to the QDS approach, Ilp represents the
two classes P and N asymmetrically since every element is
evaluated relatively to the positive instances only. We will
see later how this asymmetry is decisive in learning accurate
rankings with only linear functions.

It is worth noting however that we obtain this modality-
independent representation at the price of losing most infor-
mation about the initial feature distributions; only ordering
information is actually preserved. Our objective now is to



define a machine learning effectively able to learn from pref-
erences as efficiently as learning directly in feature spaces or
in dissimilarity spaces.

4. THE RANKING PROBLEM

The ranking problem could be formulated as follows: For
each item z € X, it exists ranking features mi,..., Tpm Or-
dering x from most preferred to least preferred. In our for-
mulation, 7; € N and m;(z1) < m;i(x0) means z1 preferred to
xo.

Additionally to the ranking features, there exists a feed-
back function ® : X x X which provides to the learner the
desired form of the final ranking. Formally ®(z1,z0) > 0
means that 21 should be ranked above z¢ while ®(z1,z¢) <
0 means the opposite. ®(x1,z0) = 0 means no preferences
between zo and z; and the magnitude of |®(z1,zo)| indi-
cates how important is to rank x; above or below xo. The
bipartite feedback function is special but common case in
document retrieval: the function is said bipartite if there
exists two disjoint set X1 and Ay such that ® ranks all in-
stances z1 of X} above instances zg of Xp. These subsets
are respectively the positive and negative subsets P and N
we defined in section 2.

Learning such a feedback function implies estimating a
ranking H : X — R through the optimization of a ranking
loss function penalizing every mis-ordered pair of items. We
consider the loss proposed in [7]

Z Ozt z7) [H(a:+) —H(z7)]. (5)

The function H(z) is a ranking of items z stating that =™
is ranked higher than = whenever H(z") > H(z™). Inter-
estingly, in case of bipartite feedback, the problem becomes
separable and the ranking loss simplifies to [7]

> w(z)s(x)H(x), (6)
z€Q

where the user feedback is carried by both
{ +1 ifzeP
s(z) =

-1 ifzenN (7)

and w(z) a weight giving the importance of the rank of the
item x.

S. RANKBOOST

Following the boosting principle, the final ranking H re-
sults from a weighted sum of weak rankings h; : ¥ — R

H(z) = Zatht(m)» (8)

which is estimated through an Adaboost-like algorithm, namely

RankBoost [7] (see Figure 1). This greedy coordinate-wise

search algorithm aims at iteratively minimizing the normal-

ization factor Z; by choosing at each round an appropriate

pair {az, h:}. For a given weak hypothesis h; € [—1,1], it

has been shown [20] that Z; is minimized for
1 1 1 + Tt

¢y = —1n
2 1—’I‘t7

9)

Given two disjoint subsets P and N and labels s(z)
over P UN as defined in (7)
Initialize
v_J 1/p ifzeP
wi(@) = { 1n ifzeN
Fort=1,...,T

— Train weak learner using wy

— Get weak ranking h; : X — R

— Compute r =Y wi(z)s(z)h(z)
— Choose ay € R

— Update
w1 () = Z%wt(x)e
where Z; is a normalization factor

—ars(@)hi ()

Output the final ranking H(z) = >,_, arhe(x)

Figure 1: The RankBoost algorithm for bipartite
feedback

where r is the weighted classification rate
re = wi(x)s(z)he(x). (10)

The algorithm is run over a number T of iterations which
is predefined or may depend on the training error. In our
implementation, the loop is stopped whenever the training
error is equal to 0, with a maximum of 2pm iterations.

5.1 Weak ranking

The weak ranking h; is produced through a weak learner.
It has to provide a new ranking from ranking features ;
conforming the best to the bipartite feedback. For example,
the weak learner proposed in [7] selects at each iteration
the ranking feature m; minimizing the training error. The
output preserves only relative-ordering information so as to
be independent of specific preference values,

o ={ T Emm sy (1)

As illustrated in Figure 2, this weak learner consists in fitting
a step function to the user feedbacks {s(z;)}7_, sorted by
increasing order of m;(z;). The best weak ranking is the
one maximizing equation (10) over the g candidate weak
rankings for the pm preferences m;. The evaluation of all
candidates is done in O(gpm).

As defined in (11), the function h(z) provides at each it-
eration a binary ranking. The final ranking H (eq. (8)) is
thus an injection on X whose image has as at most cardi-
nality 27, ie H(z) : X — {v',..., 1)2T}4 Typically when the
training set is small or when the ranking problem is sim-
ple, RankBoost converges in a few iterations (7" small) and
consequently provides a coarse ranking partitioning the col-
lection X in few blocks. To get a finer ranking, we propose
to use the a soft ranking function,

h(z) =27 ® 1. (12)

Learning this weak ranking consists of choosing the pair



Figure 2: Binary weak ranking. The 7;(z)’s are or-
dered in increasing order.

Figure 3: Soft weak ranking. The 7;(x)’s are ordered
increasing order.

(7i,7) that maximize the classification rate r, (10). Given
a ranking feature m;, a grid search on ~ is achieved rather
than a time-consuming non-linear regression. The grid ver-
tices are positioned at the middle of the g ranking intervals
(see Figure 3). With this approximation, the weak learner
complexity remains O(gpm).

6. EXPERIMENTS

The behavior and performance of ranking data in the three
representation spaces (feature, dissimilarity and preference)
are studied here. As stated before, RankBoost (soft and bi-
nary weak ranking) will be used to learn preferences. As far
as feature and dissimilarity spaces are concerned, ranking
are produced with the SVM algorithm. Depending of ex-
periment, linear or non-linear (eg using RBF kernel) SVM
is used.

6.1 Toy examples

Artificial data allows us to concretely illustrate how rank-
ings are learned in the various representation spaces. The
following toy examples are made so as to be representative of
the class asymmetry we generally meet in real applications.
For every learning technique, the learned ranking is super-
imposed to the items; white areas correspond to top ranks
and black areaus to the last rank. Moreover, prototypes
selected by Rankboost are indicated with the * marker.

The first example (Figure 4) corresponds to an ideal sep-
arable case, where all the positive instances (cross marker)
belong to the same cluster, while the negative samples are
distributed around (circle marker). The corresponding dis-
similarity space is built using pairwise Euclidean distances
while the preference space is derived by ordering dissimilar-

RankBoost (smooth weak ranking) RankBoost (binary weak ranking)

(a) (b)

QDS, linear SVM Feature space, rbf kernel

() (d)

Figure 4: Cross toy example

ities. Linear SVM is used to learn in QDS while a RBF-
SVM with an appropriate scale parameter operates in fea-
ture space.

In each case (preferences, dissimilarities and features, re-
spectively in Figure 4.a, b, ¢ and d), a perfect ranking has
been estimated. As the class setup is simple, only one weak
ranking (indicated by the selected prototype) is necessary
for RankBoost (Figure 4.a and b). It implies that the fi-
nal ranking is binary when using the binary weak ranking
function, while learning with the soft weak ranking provides
us with a more convenient continuous ranking. Notice that
a linear function is also enough to catch the positive class
within dissimilarity space (see [4] for justifications), while a
non-linear RBF-based ranking function is needed in feature
space.

The second example (Figure 5) depicts a less obvious prob-
lem, the XOR configuration. The classes are no longer lin-
early separable neither in preference space nor in dissimilar-
ity space. In that case, the linear SVM used in QDS failed in
estimating the ranking. On contrary, RankBoost succeeds
in finding the two positive clusters and selects one prototype
per cluster.

6.2 Real data

6.2.1 Corel image collection

The studied image collection is a subset of the Corel col-
lection. It contains 1159 images annotated with 1 to 10 key-
words per image (including some non-sense descriptions).
The images are categorized into 49 classes. Textual and vi-
sual features are considered for fusing experiments: The vec-
tor space model F*** containing tf-idf weights is built from
keywords (2035 terms). The color space F<°'°" contains 166
bins HSV histograms and the texture space F***"*¢ is made



RankBoost (binary weak ranking)

RankBoost (smooth weak ranking)

(a) (b)

QDS, linear SVM Feature space, rbf kernel

(d)

Figure 5: XOR toy example

of Gabor filter bank outputs (120 dimensions). Cosine dis-
tance is considered for textual features, while Euclidean is
used in visual feature spaces.

Fusion is operated in feature space, dissimilarity space and
preference space. In feature and dissimilarity space we have
considered a state-of-the-art hierarchical fusion scheme [2,
24]. At the first level, base classifiers are trained in each
monomodal space. At the second level, a super classifier is
used to fuse soft-outputs of all base classifiers. Base classi-
fiers and super classifier are RBF SVM. Optimal classifier
parameters have been determined through a leave-one-out
cross validation.

Retrieval performance is given in terms of Mean Average
Precision (MAP). Average Precision (AP) is the sum of the
precision at each relevant hit in the retrieved list, divided by
the minimum between the number of relevant documents in
the collection and the length of the list. The MAP is sim-
ply the AP averaged over several classes. Additionally to
the algorithm performance, a baseline consisting in retriev-
ing randomly documents is always provided. All results are
displayed in Figure 6.

Multimodal retrieval (Figure 6.b) and text-only search
(Figure 6.a) are studied. In both cases we observe that for
RankBoost, soft ranking outperforms largely binary rank-
ing. Moreover, the soft ranking performs similarly to the
SVM approaches whereas it uses only a degraded version of
the original features. The second observation we can make is
that the multimodal retrieval outperforms only very slightly
the keyword-only search, whatever the approach considered.
This result seems to indicate that keywords bring much of
the category information, and that color or texture low-level
information are of little help in that case. This observation
is confirmed by analyzing the ranking features selected by

RankBoost to build retrieval models: among all retrieval
instances, text information is used for 93% of them, while
color and texture features are only used for respectively 36%
and 17% of the cases.

6.2.2 TRECVID video corpus

We now consider the TRECVID 2005 benchmark. In our
setup, videos are segmented into around 89’500 segments us-
ing the common shot reference [18]. These shots are consid-
ered as individual and independent documents. This means
that no contextual information is taken into account and
that shot description is restricted to its audiovisual content
(eg visual, audio and speech® information).

The Search Task, as defined in TRECVID-05, consists in
retrieving shots that are relevant to some predefined queries
(called topics). There are 24 topics concerning people (person-
X queries), objects (specific or generic), locations, sports
and combinations of the former. For each topic, keywords,
pictures and several video shots (4-10) are provided as pos-
itive examples. Further details about the Search Task may
be found in [21]. During the experiments, we only consid-
ered video shots as positive examples. The positive exam-
ples are completed with ten negative examples randomly
selected within the test set. Starting with this initial query,
a relevance feedback loop is initiated by adding to the query
up to 10 new positive and negative examples returned in
the 1000-entries hit-list (the search depth of 1000 is given
by TRECVID). The process is repeated ten times. Follow-
ing the TRECVID evaluation protocol, the performance was
measured at each iteration by MAP at 1000. Additionally
to the algorithm performance, a baseline consisting of re-
trieving randomly documents is always provided.

The multimodal features are derived from the six following
text and audiovisual descriptors:

- Color histogram, 4 x 4 x 4 bins in YCbCr space

- Motion vector histogram, 66 bins quantization of the
MPEG block motion vectors [11]

- Local features, SIFT descriptors extracted around the
Lowe salient points [13],

- Face detection [23],

- Word occurrence histogram (vector space model) com-
puted from ASR,

- Dominant audio features [8] extracted from the audio
stream.

The distance measures used are Euclidean for color and mo-
tion histograms. An approximation of the minimal match-
ing distance is applied on local features to determine partial
similarities [14]. Euclidean distance in the 30-dimensional
eigenface space gives the similarity between the detected
faces. Cosine distance is used for the vector space model
and finally the audio similarity measure proposed in [8] is
used for audio features.

The fusion strategies remain the hierarchical RBF SVM
approach in feature spaces and dissimilarity spaces. For fea-
ture space however, we adapt the RBF-kernel to the dis-

tances used, kq(z,y) = e_%? (it is worth noting that kq
is strictly a RBF-kernel when d is an Euclidean distance).
Optimal classifier parameters have been cross-validated us-
ing the TRECVID development set.

'the speech transcripts extracted by Automatic Speech
Recognition (ASR) are also available.
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Figure 6: Image retrieval results with a) multimodal fusion and b) keywords-only search

MAP results are given in Figure 7.a. We compare multi-
modal retrieval techniques with the best monomodal search
(hierarchical SVM in D35R). In that case, the retrieval accu-
racy benefits from multimodal fusion. Whatever the fusion
strategy we consider it definitely outperforms the ASR-only
search. The overall RankBoost performance remains very
close to the best retrieval result provided by the hierarchi-
cal SVM in dissimilarity space. Soft ranking and binary
ranking have now similar performance and the latter is even
slightly better when the training set becomes large. How-
ever, soft ranking systematically selects less features than
binary ranking to produce the final ranking (Figure 7.b) and
thus converges faster and provides simpler retrieval models.
This is confirmed by the computational time (Table 1) as we
observe that soft ranking is slightly faster than binary rank-
ing. It is also interesting to note that RankBoost is around
20 times faster than the hierarchical SVM approaches.

Table 1: Computational time
(in second, Intel Xeon 2.80GHz)

p+n | SVM in F | SVM in Dp | binary rkg | soft rkg
20 0.46 0.36 0.009 0.01
30 0.80 0.68 0.028 0.024
60 2.95 2.75 0.17 0.12
100 9.43 9.23 0.56 0.52

7. CONCLUSION

The preference space we introduced in this paper is a very
lightweight representation of the original feature space where
all information relative to multimedia content is stored. Ad-
ditionally to the above argument, preferences have the strong
advantage to completely abstract multimodal content from
dimensionality and scaling issues, and thus to facilitate fu-
sion of heterogeneous descriptors. The challenge is then how
to implement retrieval algorithms in preference space that
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Figure 7: Multimodal video retrieval using a Relevance Feedback strategy with a) Mean Average Precision,
and b) percentage of ranking features selected by RankBoost.

are as effective as techniques based on more traditional rep-
resentations (eg feature space). The RankBoost algorithm
offers us a very convenient solution, especially when con-
sidering the soft ranking function as a weak ranking. The
performance is very close to state of the art SVM-based fu-
sion algorithm operating in feature or dissimilarity spaces.
The algorithm is parameter free and thus avoid any lengthy
and hazardous parameters estimation. Finally, RankBoost
is really fast compared to SVM-based approaches which is a
crucial argument for online retrieval systems.
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